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Preface
 

In the literature, there are only a couple of excellent books of quantum computational 
physics and other books with comprehensive mathematical approach for quantum 
mechanics; and there is only one excellent comprehensive book of the history of 
the quantum mechanics. Nonetheless, as far as we know, there is no book that 
encompasses all these three cornerstones of the quantum physics in a detailed 
manner. When the student learns the quantum mechanics with all these three central 
components together (historical, mathematical and computational approaches), he/ 
she will have a more proficient learning experience in quantum mechanics. This 
book intends to present a detailed (but not complete) presentation of historical, 
mathematical and computational approaches with respect to quantum mechanics. 
The book is supportive in mathematical and computational topics related to quantum 
mechanics in order to make the reading straightforward and easy. The historical 
approach of the book follows the natural path of the chronological sequence of 
published papers divided in chapters which represent the most important themes of 
quantum mechanics. By reading the book in its chronological historical sequence, 
the reader will realize the importance of learning the concepts and facts from the 
beginning of quantum theory which form important pillars of the theory prior to the 
advent of Schrödinger’s wave mechanics. When encompassing important concepts 
from Bohr, Sommerfeld, Heisenberg, Pauli, de Broglie and Dirac, it will ensure a 
better understanding of the whole theory along with those concepts that come with 
wave mechanics. 

The book gives all the mathematical support for learning quantum mechanics: 
(i) detailed development of the equations for quantum mechanics; (ii) all background 
information to understand the mathematical approach in quantum mechanics; 
(iii) chapters of important mathematical issues in quantum mechanics; (iv) and 
numerical solutions for several mathematical and quantum problems. There 
are chapters devoted to linear algebra and differential equations along with their 
numerical solutions in order to provide better support for the mathematical issues in 
quantum mechanics. 

The book is divided into three parts. In the first part, there are chapters 
introducing Fortran and numerical calculations, series, linear algebra and differential 
equations and their applications to the quantum mechanics. Chapter one (Fortran) is 
interrelated with all other chapters of the first part. Chapter two (series) is interrelated 
with Chapters five to eight of the second part. Chapter three (matrices) is interrelated 
with Chapters eight, eleven and twelve of the second part. Chapter four (differential 
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equations) is interrelated with Chapter ten of the second part and Chapters fourteen 
to seventeen of the third part of the book. 

Fortran is the most important language for the physical sciences. It is a dinosaur 
which is permanently modernized and then it is the most important and used language 
for science and engineering even today. In the first chapter, there are several Fortran 
source codes to understand the Fortran language with straightforward explanations. 
In the next three chapters, there is a detailed elucidation of the mathematics for 
quantum mechanics itself (linear algebra, series and differentiation equations) and 
for the numerical calculation (integration, finding roots and derivatives) along with 
several source codes to solve some related problems. There is a detailed support 
to understand these source codes. All these codes are available in the author’s site 
(https://www.fortran-codes.com/). 

In the second part, there are several chapters that follow the timeline of the 
historical evolution of  quantum mechanics from emission spectroscopy towards 
Heisenberg and Schrödinger’s quantum theories. The historical discussion is mainly 
based on the papers that were published by all important contributors to  quantum 
mechanics accompanied with a mathematical support. The discussion is based on the 
original scientific papers as basis for the historical approach which gives a better and 
deeper understanding of the quantum mechanics itself. It also helps understanding 
the evolution of  quantum mechanics as a science and provides several important 
information to the backbone of quantum mechanics. 

In the third part, there are chapters for the Schrödinger’s time independent one-
particle quantum problems with comprehensive mathematical approach, plus their 
numerical solutions and Fortran codes. Following the above-mentioned there is a 
chapter for helium atom using variational method and perturbation theory.  

Features: presentation of matrix mechanics and wave mechanics, along with their 
applications (some of them using both theories altogether), within their historical 
context which helps to build a more solid understanding of quantum mechanics as 
a whole—an amalgamation of both theories. Supportive mathematical details for an 
easy, straightforward reading of the quantum mechanics. Chronological sequence of 
historical facts based on the original papers which gives a more comprehensive view 
of quantum mechanics and their most important concepts. Detailed information 
about the discovery of the spin; wave-matter duality principle, matrix mechanics, 
important concepts of old quantum theory, wave mechanics and particle statistics. 
Thorough mathematical and numerical analysis of the most important one-
electron and two-electron problems of quantum mechanics. Detailed approach of 
mathematical and numerical analysis applied to  quantum mechanics. Do-it-yourself 
problems to generate all the illustrations of the book using Fortran or other software. 
Examples and exercises in most chapters. All code in the author’s site: (https://www. 
fortran-codes.com/). 

https://www.fortran-codes.com
https://www.fortran-codes.com
https://www.fortran-codes.com
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Basics of Fortran 1 
1. Notes about Fortran 
There are several versions of Fortran (FORmulaTRANslation), from Fortran IV 
to Fortran 2018 (https://www.fortran.com/). In this book, we have used Fortran-90 
to write our source codes (see examples below). Fortran presents a backward 
compatibility. As a compiled language that results in binary codes after compilation, 
Fortran has a high performance, fast debugging and testing. It has a huge number 
of numerical libraries and contains modern features such as OOP (object oriented 
programming). It also has elegant treatment of arrays and it has its own scalable 
parallel programming model (Fortran 2008 co-arrays for operation of Cartesian 
grids). Fortran is a living dinosaur of the scientific programming language and is 
still evolving. Moreover, the apprentices of scientific programming will see in this 
chapter that Fortran is very easy to learn. More information can also be found in the 
link: http://fortranwiki.org/fortran/show/HomePage. 

The following paragraphs are related with the use of Fortran in Windows 
platform. All programs used in this book are free. We have used Force 2.0.9. editor 
from ‘Force Fortran The Force Project’ (http://force.lepsch.com/) to write our source 
codes in .f extension (a type of Fortran file for the source code). In order to transform 
the source code into executable program we have used MinGW (Minimalist GNU for 
Windows) compiler (http://www.mingw.org/) along with MSYS (MinimalSystem) 
program. The MSYS program is used to create a Linux Shell statement line (MinGW 
Shell) interpreter system (a sort of Linux-based shell within the Windows platform) in 
order to transform the source code into an executable file and to run the corresponding 
executable program. See the instructions for installation of the MinGW site. 

After installing both programs, one opens the MinGW Shell (located in the main 
menu of Windows). It opens a window (MINGW32:/) whose path is: C:\MinGW\ 
msys\1.0. Then, one creates the directory \home\user\Fortran where the .f files 
will be stored. After writing the source code in Force editor, there will three single 
operations in the (Linux-based) Shell: (i) mv <name-of-source-code>.f <name-of­
source-code>.f90; (ii) gfortran<name-of-source-code>.f90 -o <name-of-source­
code>; and in case the compiler finds no error in the source code, (iii) <name-of­
source-code> type <enter>. 

http://www.mingw.org
http://www.force.lepsch.com
http://www.fortranwiki.org
https://www.fortran.com
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Alternatively, one may install MinGW from the site of GCC (https://gcc.gnu. 
org/wiki/GFortranBinaries), follow the path “toolchains targeting win64 > personal 
builds >mingw-builds > 5.3.0 > threads-posix>seh” and unzip the folders in a 
chosen location. Afterwards, go to the control panel in Windows and follow the path 
“system and security > system > advanced system settings”, in the tab “advanced” 
click on “environment variables” and modify the PATH variable and add the location 
of the MinGW bin folder (where there is the file x86_64-w64-mingw32-gfortran. 
exe). Next, install the software Code::Blocks, the IDE for Fortran from the site 
of CBFortran (http://cbfortran.sourceforge.net/) and learn how to use it to open 
existing .f90 files (https://www.youtube.com/watch?v=GFrl8A_JgbE&feature=youtu. 
be) or to use it for writing new files .f90 (https://www.youtube.com/watch?v=b­
9cBnnczNE&feature=youtu.be). 

In order to visualize the results from .dat output files, one can use the 
multiplatform, free GNUPLOT (Willians  et al. 2018). The GNUPLOT can be 
downloaded from http://www.gnuplot.info/ 

All the source codes of this book can be found in the authors’ own website at the 
link https://www.fortran-codes.com/. 

The general-purpose libraries of Fortran can be found in http://fortranwiki.org/ 
fortran/show/Libraries. 

The following link (http://fortranwiki.org/fortran/show/Software+repositories) 
indicates several repositories of Fortran codes, such as : Computer Physics 
Communications Programs Library (http://cpc.cs.qub.ac.uk/) where you can find 
several codes for physics problems, e.g., the Hartree-Fock method. Other resources 
of Fortran libraries are: (http://www.fortranlib.com/freesoft) and (https://people. 
sc.fsu.edu/~jburkardt/f_src/f_src.html). More specifically, one can find the Fortran 
codes of Dalton package for quantum chemistry calculation (https://gitlab.com/ 
dalton/dalton/tree/release/2018/DALTON), the Fortran codes of the Valence program 
(https://github.com/VALENCE-software/VALENCE/tree/master/src) and Fortran 
codes of the Gamess quantum chemistry package (https://github.com/streaver91/ 
gamess_source_mod). 

2. Bits and bytes 
Computers use binary (base-2) system. Each bit has 0 or 1 value. From right to left 
the value increases in the basis 2 and exponent from 0 to n, where n is an integer. For 
example, the number 21 in decimal system corresponds to 10101 in binary system. 
In this case, the number 10101 has five bits. 

21 2 101 + ×1 10 0= ×  (10) 

4 3 2 1 010101 = ×  1 2 0 2 + ×1 2 0 2 1+ ×  + × + ×  2(2) 

21 = 10101(10) (2) 

Variables and constants are stored in the hardware as a sequence of 32 or 64 
bits called ‘word’ (natural unit of information). In a 32-bit architecture (e.g., 32-bit 
processor or 32-software), the bits of a word are grouped in 4 bytes of 8 bits each. 
This is the integer size or memory address width of four octets in 32-bit computing. 

https://www.github.com
https://www.gitlab.com
https://www.people.sc.fsu.edu
http://www.fortranlib.com
http://www.cpc.cs.qub.ac.uk
http://www.fortranwiki.org
https://www.fortran-codes.com
http://www.gnuplot.info
https://www.youtube.com
http://www.cbfortran.sourceforge.net
https://www.gcc.gnu.org
https://www.gcc.gnu.org
https://www.youtube.com
https://www.youtube.com
https://www.youtube.com
http://www.fortranwiki.org
http://www.fortranwiki.org
https://www.people.sc.fsu.edu
https://www.gitlab.com
https://www.github.com
https://www.github.com
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In a 64-bit architecture, the integer size and memory address width have eight octets 
(8 bytes). Independently of the architecture, one byte is a collection of 8 bits. 

As the amount of bits increases the quantity of patterns (or possible combination 
in that set of bits) increases ‘exponentially’. Mathematically, n bits give 2n patterns. 
For example, 8 bits correspond to 28 or 256 patterns or one byte. 

Any number in Fortran can be real (number encompassing all range of numbers 
except for imaginary numbers, having fractional/decimal part or not), integer 
(integral number without fractional part) or complex. Then, a rational number (or 
decimal numbers) has two parts: integral part at the left side of the decimal separator 
(a dot) and the fractional part at the right side of the decimal separator. In Fortran, 
a rational number is synonymous with a real number. When a variable is attributed 
to a real number, it might be represented in Fortran only by the integer part and the 
decimal separator, e.g., 0. or 10., etc. Fortran stores a complex number a+bi as two 
real numbers adjacent in memory. For example, the entry: COMPLEX*16 A/(1,2)/, 
yields 1+2i complex number. 

One byte holds 1 typed character. The set of 4 bytes can store integers from 
–2147483648 to 2147483648, while the set of 8 bytes can store integers from 
–9223372036854775808 to 9223372036854775808. An integer overflow occurs 
when a number exceeds this limit. 

In ASCII code (American Standard Code for Information Interchange), each 
typed character is represented by a number stored in 1 byte. The ASCII codifies 
128 symbols (alphabet letters, punctuation marks, mathematical symbols and control 
characters). 

The 32-bit computers support a maximum of 4GB (232 bytes) of addressable 
RAM while 64-bit computers have a theoretical maximum of 18 EB (264 bytes). 
From now on, let us assume we are working on a 32-software, e.g., a 32-bit Fortran, 
although modern Fortran is 64-bit (https://www.fortran.com/). 

In a 32-bit architecture, an integer or real number has 4 bytes wide, named 
INTEGER*4 or REAL*4, respectively by Fortran. Then, any number in a 32-bit 
Fortran is either INTEGER*4 (without dot) or REAL*4. 

The most left bit of integer or real number is used for the sign (+ or –) of this 
number, called s. In a real number, the next 8 bits after the s-bit represent the integer 
part (named p) and the other 23 bits represent the fractional part, called f. 

The default precision of a real number is single precision from REAL*4. In 
order to increase the precision of a real number it is used REAL*8 or DOUBLE 
PRECISION along with the suffix d0 or _db after the number. The REAL*16 refers 
to quadruple precision of real numbers but it works only in 64-bit architecture. 
Let us observe the decimal number below in binary and decimal systems. 

f (2)
 = .10001100110011001100110

f = 2−1 + 2−5 + 2−6 + 2−9 + 2 −10  + 2 −13 
2) + −14 −17 

( 
 2 + 2 + 2 −18 + 2−21 + 2−22


f = 1 + +1 1 + 1 + 1 + 1  + 1 + 1  + 1  +  1 
( + 1

2) 2 32 64 512 1024 8192 16384 131072 262144 2097152 4194304 

f (2) = 0.5 + 0.03125 + 0.015625 + 0.001953 + 0.000976 + +... 0.000000238

f (10) ≈ 0.5498

https://www.fortran.com
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3.  Types of scalar data in Fortran 
In Fortran, there are two basic types of scalar data: constant data and variable data. A  
variable might be a letter or a word. In a variable, different values might be assigned, 
unlike a constant. The constant data may be numerals or alphabetical characters. 

There are five types of constant: 
 (i)  integer literal constant (1;0; –99;+100;299456; etc.); 
(ii)   real literal numbers (0.03; 3.1416; 1792.3; etc); 
(iii)   complex literal constant (1., 3.2, i.e., 1.0+3.2i; 2.0, 4.78, i.e., 2.0 + 4.78i.), 

designed by a pair of literal constants separated by a comma; 
(iv)   String or character literal constant (‘Anything is possible’) where the apostrophes 

or quotation marks serve as delimiters; 
 (v)  logical literal constants (.true. and .false.) used to initialize logical variables. 

It is also important to note that a number can be written in Fortran in scientific 
notation by means of the E-notation, where E means ‘exponent’, i.e., ten raised to 
the power of number n or 10n. However, the symbol E can be exchanged into D in 
Fortran (either E or D can be used). Note that E is used for single precision and D is 
used for double precision. For example, 6.02 x 1023 and 0.55 can be written in Fortran 
as 6.02D+23 and 55.D-02, respectively. 

As to the variables, a value attributed to a variable is stored in the computer 
memory. If no value is attributed to the variable, the value of the variable will be 
zero (0). 

At the beginning of the source code, one can define whether the scalar variable 
will be: 
 - an integer number (e.g., INTEGER :: A,B); 
 - a real number (e.g., REAL :: C,D); 
 - a complex number (COMPLEX :: E,F); 
 - logical (LOGICAL :: matrix); 
 - or character (CHARACTER :: letter). 

!name of the program: VARIABLE 
integer :: total 
real :: average 
complex :: cx 
logical :: done 
character(len=80) :: message 
total = 10000 
average = 5000 
done = .true. 
cx = (0.5, -4.0) 
message = ‘Hello’ 
write (*,*), total, average, done, cx, message 
stop 
end 
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There are only two types of logical values: .TRUE. and .FALSE. 
It is important to add that the number of decimal places in a real number can 

be controlled by REAL statement. The REAL*4 or just REAL statement has 7 
decimal places while the REAL*8 statement has 16 decimal places. The REAL*8 is 
a nonstandard notation and it can be replaced by DOUBLE PRECISION statement. 
When using PARAMETER statement, you can set the value of the variable in the 
REAL construct. The REAL*8 statement has single precision with 16 decimal 
places, i.e., it has the precision of REAL*4. The DOUBLE PRECISION statement 
alone has also single precision. The double precision is only guaranteed when using 
DOUBLE PRECISION or REAL*8 when there is d0 after the value of the variable. 
The REAL*16 yields 34 decimal places with single precision or double precision 
(when there is d0 at the end of the value of the variable) for 32-bit Fortran. Then, d0 
has to be used after the value of the variable to guarantee the double precision. 

!REAL* and double precision program 
!Program name: PRECISION 
real, parameter :: a=1.12345678901234567890 
!real or real*4 has 7 decimal places 
double precision :: b,c 
real*8 d,e 
!real*8 or double precision have 16 decimal places 
!real*8 has single precision with 16 decimal places 
!double precision has DOUBLE PRECISION when there is d0 
real*16 f,g 
b=1.12345678901234567890d0 
c=1.12345678901234567890 
d=1.12345678901234567890 
e=1.12345678901234567890d0 
f=1.12345678901234567890 
g=1.12345678901234567890d0 
print *, a !shows 1.1234568 (single precision)
 
print *, b !shows 1.1234567890123457 (double precision)
 
print *, c !shows 1.1234568357467651 (single precision)
 
print *, d !shows 1.1234568357467651 (single precision)
 
print *, e !shows 1.1234567890123457 (double precision)
 
print *, f
 
!shows 1.1234568357467651367187500000000000 (single precision)
 
print *, g 
!shows 1.1234567890123456912476740399142727 (double precision) 
stop 
end 

The intrinsic types (real and integer variable or constant) may be associated with 
INTEGER-PARAMETER-SELECTED_REAL-KIND construct can also be used 
to guarantee the double precision. This construct replaces REAL*8 and DOUBLE 
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PRECISION. The SELECTED_REAL_KIND(p,r) guarantees the decimal precision 
of at least p digits and exponent range of at least r for the parameter of a real data 
type. The syntax of this construct is: 
INTEGER,PARAMETER :: variable1=SELECTED-REAL_KIND(p,r) 
REAL(KIND=variable1) :: variable2 

In the next code, one can see that the suffix ‘_dp’ has the same effect as the 
suffix ‘d0’. Both can be used in DOUBLE PRECISION statement or INTEGER­
PARAMETER-SELECTED_REAL-KIND construct. 

!program real_kinds and double precision 
!program name:PRECISION2 
integer,parameter :: p6 = selected_real_kind(6) 
integer,parameter :: p10r100 = selected_real_kind(10,100) 
integer,parameter :: p13r200 = selected_real_kind(13,200) 
integer,parameter :: r400 = selected_real_kind(r=400) 
integer,parameter :: dp = selected_real_kind(15,307) 
integer,parameter :: sp = selected_real_kind(6,37) 
integer,parameter :: dp2 = selected_real_kind(15,307)

 double precision :: e,f

 real(kind=p6) :: x

 real(kind=p10r100) :: y

 real(kind=r400) :: z

 real(kind=p13r200) :: w

 real(kind=dp) :: a

 real(kind=sp) :: b

 real(kind=dp2) :: c,d
 

a=1.12345678901234567890
 b=1.12345678901234567890
 c=1.12345678901234567890_dp
 d=1.12345678901234567890d0
 e=1.12345678901234567890d0
 f=1.12345678901234567890_dp 

print *, precision(x), range(x) !shows 6 37
 print *, precision(y), range(y) !shows 15 307
 print *, precision(w), range(w) !shows 15 307
 print *, precision(z), range(z) !shows 18 4931
 print *, a !shows 1.1234568357467651 (single precision)
 print *, b !shows 1.1234568
 print *, c !shows 1.1234567890123457 (double precision)
 print *, d !shows 1.1234567890123457 (double precision)
 print *, e !shows 1.1234567890123457 (double precision)
 print *, f !shows 1.1234567890123457 (double precision)
 stop
 end 
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The real value can be rounded to the nearest whole number or real number by 
using NINT (round to the nearest integer from REAL*4); ANINT (round to the 
nearest integer but return a real result); IDNINT (round to the nearest integer from 
REAL*8). 

!Program name: ROUND 
real*4 x 
real*8 y 
x=1.234e04 
y=4.321 
print *, x, y, nint(x), idnint(y), anint(x), anint(y) 
stop 
end 
---------------It shows in the screen-------------------------­
12340.000 4.3210000991821289 12340 
4 12340.000 4.0000000000000000 

It is a good practice to indicate at the beginning of the source code that all 
variables have to be declared explicitly, i.e., no variable are implicitly declared. This 
is done by introducing the statement IMPLICIT NONE at the very beginning of the 
code. 

The maximum value of an integer variable is given by the HUGE function. 
The KIND statement can be used to determine the number of bytes to be used. The 
KIND(variable) is used to display the details of the hardware’s data during execution 
of the code. 

!Name of the program: DATA 
!Examples of data 
Implicit none 
!maximum integer value 
Integer :: A 
Integer (kind=2) :: B !it uses two bytes 
Integer (kind=4) :: C !it uses four bytes 
Integer (kind=8) :: D !it uses eight bytes 
print *, huge(A), kind(A) !it shows 2147483647 
print *, huge(B), kind (B) !it shows 32767 2 
Print *, huge(C) !it shows 2147483647 4 
Print *, huge(D), kind (D) 
!it shows 9223372036854775807 8 
stop 
end 

The POINTER statement stores the memory address of an object and contains 
information such as object, rank and extents. The TARGET statement associates one 
pointer variable to other target variable by means of the symbol =>. The TARGET 
statement requires the POINTER statement. The pointer can be re-associated with 
another variable any time and the pointer can be disassociated by the NULLIFY 
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statement. The function ASSOCIATED can be used to inquire if a pointer is 
associated with any target. 

!Name of the program: POINTER 
!Example of POINTER and TARGET statements 
implicit none

 integer, pointer :: pa
 integer, target :: a
 pa=>a
 pa = 10
 Print *, pa
 Print *, a
 pa = pa + 4
 Print *, pa
 Print *, a
 If (associated(pa, target=a)) then 

Print *, ‘pa is associated with a’

 else
 

Print *, ‘pa is not associated with a’

 End if 

Nullify(pa)


 Print *, pa

 Print *, a

 If (associated(pa, target=a)) then
 

Print *, ‘pa is associated with a’

 else
 

Print *, ‘pa is not associated with a’

 End if 

Stop


 End 

----------RESULT ON THE SCREEN ---------------­
10 
10 
14 
14 
pa is associated with a 
0 
14 
pa is not associated with a 

4. Algorithm structure and Fortran input/output (I/O) 
An algorithm encompasses a set of statements to run a determined calculation. It 
is the initial architecture of a source code. Then, it is an important step prior to its 
codification into a specific programming language (Fortran, C, Python, etc). 
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A simple algorithm structure is made up of:: (i) algorithm title; (ii) input 
parameters (read statement); (iii) arithmetic/logic expression; (iv) output parameters 
(write statement); (v) end of the algorithm. Let us see the example below: 

Fahrenheit-Celsius converter 
Read Fahrenheit 
Celsius ← (Fahrenheit - 32)*5/9 
Write Fahrenheit, Celsius 
End 

------FORTRAN Source Code-----­

!Program name: CELSIUS 
!Fahrenheit-Celsius converter

 read *, F
 C=(F-32)*5/9
 Print *, ‘Fahrenheit= ‘, F, ‘Celsius= ‘, C 

Stop
 End 

The statement READ * reads the input—a value given by the user—in a free-
format input, that can be, for example: 21.0; 21.; +21; 21;2.1E+01. When depicting 
the value from the PRINT * statement, Fortran decides the precise format of the 
output. The “*” instructs Fortran to read or to write to the screen. 

There are three different ways to determine the size of the array, n, and its 
elements, a(i), one might give. They are: 

(i)  READ(*,*) n, (a(i), i=1,n) 
(ii)  READ(*,*) n

 READ(*,*) (a(i),i=1,n) 
(iii) READ(*,*) n

 DO i=1,n
 READ(*,*) a(i)
 END DO 

The statement WRITE is a general PRINT. Both READ and WRITE can have 
following forms: READ(unit,format) list; WRITE(unit,format) list. The ‘unit’  
specifies I/O unit to use (5 corresponds to standard-in, 6 is standard-out, and 0 is 
standard-error). The ‘format’ is the statement number of the FORMAT statement 
that specifies the format of the depicted data. The ‘list’ contains all variables (from 
READ) or expressions (from WRITE). 

The FORMAT statement instructs Fortran how to display the data (integer, 
real, logical and/or character). It has some field specifications. We use the following 
convention of symbols: 
 - w: number of positions to be used 
 - d: number of digits to the right of the decimal point 
 - e: number of digits of the exponent part. 
 - m: minimum of digits to be printed 
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Important to add that this number of positions is not the precision of the number. 
The edit descriptors for the variables (which are not case sensitive) are: I,i (for integer), 
F,f (for real number in decimal form), E,e or D,d (for real number in exponential 
for), ES, es (for real number in scientific form), L,l (for logical values), A,a (for 
character). The edit descriptors for the positioning are: X (horizontal positioning), T 
(tabbing positioning) and /(vertical positioning). 

The syntax of the edit descriptors are: 

- Iw or iw or Iw.m or iw.m
 

- Fw.d or fw.d
 

- Ew.d or ew.d or Dw.d or dw.d
 

- ESw.d or esw.d
 

- Lw or lw
 

- A or Aw or a or aw
 

- nX or nx
 

- Tc or tc
 

Where w, d, e, c and n are numbers 
The FORMAT statement can be done in two equivalent forms: 
Write (*,’(3i,F8.3)’) y, z 
Or 
Write (*,1) y,z 
1 format (3i,f8.3) 

See the example below where the variable J is an integer and X and Y variables 
are real numbers. 

!Program name: FORMAT 
!Use of FORMAT statement 

Real*8 X/1.23/,Y/53./
 
Integer a, b, c
 
Real*8 d, e, f
 
a= -1024
 
b= 999
 
c= 124438
 
d= 3.14159
 
e= -96.4
 
f= 256.4578E-02
 
J=37
 

Write(6,10) J,X,Y 
10 Format(1X,I3/’X=’,T7,F5.2/D8.2)

 Print *, 
Write (*,20) ‘The area is’, X 
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20 format (a,f8.5)
 Print *, 
Write (*,30) X,Y,J 

30 format (t10,f4.2,/,t10,f6.2,/,t20,i4)
 Print *, 
Write (*,’( I10, I10, I10)’) a, b, c 
Write (*,’( 3I10.8)’), a, b, c
 Print *, 
Write (*,’(F7.2, F7.2, F7.2)’) d, e ,f 
Write (*,’( 3F7.4)’)
 stop
 End 

--------------------------It shows on the screen --------------------­
37 
X = 1.23 
0.53D+02 
The area is 1.23000 
1.23 
53.00
 37 
–1024 999 124438 
–00001024 0000999 00124438 
3.14 -96.40 2.56 
3.1416 ******** 2.5646 

The statement CHARACTER is used to associate a ‘character variable’ with 
a word or sentence as an input (string). Then, one can use this ‘character variable’ 
to represent the input word/sentence wherever one likes in the source code. For 
example: 

!Program name: CHARACTER 
!statement CHARACTER to associate a character variable with a sentence

 character*1 LINE(80)

 Print *, ‘Write a sentence of 80 characters maximum:’

 Read (5,10) LINE
 

10 FORMAT (80A1)
 Print *, LINE
 Stop
 End 

However, there are other two ways to give the size of the variable character: 

- CHARACTER, DIMENSION(80) :: line 
- CHARACTER(len=80) :: line 
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There are several functions associated with the CHARACTER statement. They are: 

- TRIM(character_variable): returns the value of the character variable (string) 
without trailing blanks 

- INDEX(character_variable,name): it finds the location of the ‘name’ word in the 
string of the character variable and it shows the position of the ‘name’ word or 
else it gives zero value. 

The operator // is the concatenation operator. It concatenates strings in the same line. 

!Program name:CHARACTER2 
Implicit none 
character (80) :: text 
character (len=6) :: title 
character (len=15) :: surname, firstname 
character (len=60) :: name, name2 
integer :: i 
Write (*,*) ‘Give your title, first name and surname: ‘ 
Read *, title, firstname, surname 
name= trim(title)//trim(firstname)//trim(surname) 
name2 = title//firstname//surname 
Print *, ‘Hello,’, name 
Print *, ‘Hello,’, name2 
Text=’Do you believe in the power of love?’ 
i=index(text,’love’) 
If (i /= 0) then 
print *, ‘The word LOVE is at position: ‘, i 
print *, ‘in the text: ‘, text 
end if 
stop 
end 

5. Conditional structure in Fortran 
Conditional structure/expression is a set of performed statements in case certain 
condition is met. It involves IF-THEN construct, but it can include ELSE in the 
statements. 

In Fortran, in IF-THEN-ELSE construct, the THEN can be omitted after IF 
(logical expression). The IF statement relates to two expressions by means of the 
logical expression (or relational operator). There is an equivalent operator that can 
be used as well. 
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culate the roots of aquadratic equation 
d A, B and C 
 B**2-4*A*C
 
 -B/(2*A)
 
 SQRT(ABS(D))/(2*A)
 
<0 
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Relational operator Meaning Equivalent operator
 
.LT. or .lt. < <
 

.LE. or .le. ≤ <=
 

.NE. or .ne. ¹  /=
 

.EQ. or .eq. = ==
 

.GT. or .gt. > >
 

.GE. or .ge. ≥ >=
 

Some examples: 

 - IF (i .ne. 0) THEN 
 - IF (j >= 2) THEN 
 - IF (answer == ‘Y’) THEN 
 - IF (a+b>i*j) THEN 

It is possible to use logical expressions (.AND., .OR., .NOT., .EQV., .NEQV.) in 
IF-THEN-ELSE statement to make a compound expression. For example: 

 - IF (A .EQ. 7 .OR. A .EQ. -7) THEN 
 - IF (A(i,j) == MAXVAL(A) .AND. A(i,j) << 10) THEN 

First example: The equations below are the quadratic equation and its root(s) 
that can be two real numbers (if d>0), two imaginary numbers (if d<0) and one real 
number (if d=0) 

ax2 +

x  =

d =

Cal
Rea
D ←
E ←
F ←
IF D
Write X1←E+Fi and X2←E-Fi 
IF D=0 
Write X=E 
IF D>0 
Write X1←E+F and X2←E-F 
End 

------FORTRAN Source Code-----­
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!Program name: QUADRATIC 
!Roots of the quadratic equation

 Read *, A, B, C 
D = B**2 - 4.*A*C

 E = -B/(2.*A)
 F=sqrt(abs(D))/(2.*A) 

if (D .lt. 0.) print *, ‘X1=’,E, ‘+i’ ,F, & 
& ‘X2=’,E, ‘-i’, F

 if (D .eq. 0) print *, ‘X=’, E
 if (D .gt. 0) print *, ‘X1=’, E+F, ‘ X2=’, E-F
 stop
 end 

Second example: routine to determine whether a number is even or odd. This 
routine only works because the variables are integers and the equation n/2 is round 
to the nearest smaller integer. 

!Program name: EVEN-ODD 
!Routine to determine whether an input number is even or odd 
integer :: n,nh 
Print *, “input n: “ 
Read *, n 
nh=n/2 
! If you type 1, 3, 5, (odd number), the result is rounded to 0, 1, 2 
! If you type 0, 2, 4, (even number), the result is rounded to 0, 1, 2 
print *, nh 
if (2*nh==n) then 
print *, 2*nh, “even” 
else 
print *, 2*nh, “odd” 
! If n=1, nh=0, 2*nh=0, 1≠0, odd 
! If n=2, nh=1, 2*nh=2, 2 = 2, even 
! If n=3, nh=1, 2*nh=2, 3 ≠ 2, odd 
! If n=4, nh=2, 2*nh=4, 4 = 4, even 
end if 
stop 
end 

6. Repetitive structures (loops) in Fortran 
Repetitive structure/expression is a type For-Until loop (or iteration) statement that 
tells the computer to repeat sections of statements several times. The repetitive 
structure can have a counter or not. The repetitive structure with a counter is: FOR 
<control variable>←<initial value> UNTIL <final value>. At each loop, the default 
increment is a unit (step 1). If the increment is greater than one, then use STEP 
<value of the increment> 
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In Fortran, the repetitive structure can be made in three forms: (i) DO loop with 
a counter; (ii) DO-EXIT construct; (iii) DO-WHILE construct. There can also be 
nested loops where one loop is inside the other. The nested loops can be named, e.g., 
outer and inner. In addition, the DO loop can be done in two different ways: 
First way: 
DO <number>i=<initial_value>,<final_value>,<step>
 

<number> CONTINUE
 

Second way: 

DO i=<initial_value>,<final_value>,<step>
 

END DO
 

First example:
 

! I values and I**2 values - loop 
do 1 I=1,20,2

 ISQ=I**2
 print *, ‘I= ‘, I , ‘I**2= ‘, ISQ 

1 continue
 stop 
end program 

Second example: 

!Program name: SUM 
!Summation from 1 to 100 
integer::i,sum 
sum=0 
Do i=1,100 
sum=sum+i 
End do 
Print *,’Sum(1-100)= ‘,sum 
Stop 
End 

Third example: 

!Program name: EPSILON 
!Epsilon - calculation of the precision

 EPS=1.
 do 

EPS=EPS/2 
If (EPS+1 .eq. 1.) exit

 End do
 Print *,’Epsilon= ‘, EPS 

Stop
 End 
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Fourth example:
 
The exponential (e) of a number (x), ex, can be given by sum below:
 

2 3 4 n 
x x x x x e ≅ sum = 1+ +x + + 

2! 3! 4! n! 

Where n is the truncation number. The higher n, the higher the precision of the sum. 

!Program name: EXPONENTIAL 
!Exponential of x 
Integer::i,j,n,fact 
real::x,sum 
Print *, ‘Let us calculate Exp(x)’ 
Print *, ‘Input a number for x: ‘ 
read *, x 
Print *, ‘Input a truncation number (n) for the series: ‘ 
read *, n 
sum=1 
outer: do i=1,n 
fact=1

 inner: do j=1,i 
  fact=fact*j

 End do inner

 sum=sum+(x**i)/REAL(fact)
 

End do outer 
Print *, ‘Exp(x)= ‘, sum 
stop 
end 

Fifth example: Calculation of the arithmetic mean (µ) and standard deviation (σ). 

1 N N 

µ µ = ∑ 1 xi , σσ = ∑( xi − µµ )2 

N i=1 N −1 i=1 

Where N is the number of elements, xi, in the sample. 

!Program name: MEANSIGMA 
!Calculation of arithmetic mean and standard deviation 
Parameter(IMAX=100)

 REAL*8 X(IMAX),SUM,SSQ,MI,SIGMA
 SUM=0
 N=0 

Do 1 I=1,IMAX
 write(0,10)
 10 Format(‘Input the N values of X (type 000 when finished): ‘,$)
 Read(5,*) X(I) 
 If(X(I) .eq. 000) then

   go to 2
 
  end if 
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SUM=SUM+X(I) 
N=N+1 
1 continue 
2 MI=SUM/DFLOAT(N) 

SSQ=0
 
Do 3 I=1,N
 
SSQ=SSQ+(X(I)-MI)**2
 

3 continue 
SIGMA=DSQRT(SSQ/DFLOAT(N-1)) 
Write(6,20) MI,SIGMA 

20 format(/’mean= ‘,F7.3/’standard deviation= ‘,F5.3) 
stop

 end 

The EXIT statement is used to leave a loop and CYCLE to skip the rest of the 
current iteration of a single loop. They are used after IF (logical_expression) in the 
same line. 

The WHILE statement can be used in DO loops meaning that the iteration will 
continue until one logical expression is met. DO WHILE (logical_expression) is 
similar to DO (variable=startvalue,stopvalue) IF (.not. logical_expression) break or 
it can be equivalent to DO EXIT statement with opposite logical expression. See the 
example below where both routines with DO EXIT and DO WHILE (with inverted 
logical expression) give the same result. 
Sixth example: square root 
Obs.: See section 10 for ALLOCATABLE, ALLOCATE and DEALLOCATE 
statements. To sum up DEALLOCATE clears the memory of the final values of 
variables used in a (previous) DO loop routine so that they can be used in a next DO 
loop routine with their initial values. 

!Program name: SQUARE 
!Find approximate square root 
Implicit none
 
Real, allocatable :: x, a, b
 
allocate (x)
 
allocate (a)
 
allocate (b)
 
Write (*,*) ‘Enter a number to find its approximate square root: ‘
 
Read *, x
 
!use the first routine with EXIT statement 
a=1; b=x/a 
do

 a=(a+b)/2.0
 b=x/a 

print *, ‘New approximation of square root of’, x, ‘is: ‘, a 
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 if ( abs(a-b) < 1e-10 ) then
 
  exit

 end if 

end do 
Print * 
Print *, ‘Precise square root of’, x, ‘is: ‘, sqrt(x) 
deallocate (a) 
deallocate (b) 
!Use the second routine with WHILE STATEMENT 
a=1; b=x/a 
do while ( abs(a-b) > 1e-10 ) !inverted logical expression

 a=(a+b)/2.0
 b=x/a
 print *, ‘New approximation of square root of’, x, ‘is: ‘, a 

end do
 
Print *
 
Print *, ‘Precise square root of’, x, ‘is: ‘, sqrt(x)
 
end
 

Seventh example 

!Program name: CIRCLE 
!Area of a circle 
Do

 Print *, ‘Enter the radius of the circle: ‘
 Read *, r
 Print *, ‘The area is: ‘, 3.1416*r**2
 Print *, ‘Do you want to calculate another area? (Y/N): ‘
 Read *, resp
 If (resp == N) exit 

End do 
Stop 
end 

7.  Select-case construct in Fortran 
The SELECT CASE construct is a type of conditional statement that executes a 

statement depending on the value of a scalar expression in a CASE statement. It has 

the general form:
 
[name:] SELECT CASE (variable)
 

CASE (‘value1’, ‘value2’,...)
 
Statement 1
 
CASE (low:high)
 
Statement 2
 
CASE DEFAULT
 
Statement 3
 

END SELECT 
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There can be more than one value in each CASE statement and there can also 
be minimum to maximum (low:high) range in each CASE statement. The CASE 
DEFAULT statement means that any value (for the variable) different from the 
scope of the anterior CASE statements will fall in the statement defined after CASE 
DEFAULT. Let us see the example below: 

!Program name: CASE 
!Select case construct 
character(len=1) :: grade 
integer :: mark 
Print *, ‘Select your grade from A to D: ‘ 
Read *, grade 
Select case (grade)

 case (‘A’,’a’)

 write (*,*) ‘Excellent!’


 case (‘B’,’b’)

 write (*,*) ‘Congratulations’


 case (‘C’,’c’)

 write (*,*) ‘Well done’


 case (‘D’,’d’)

 write (*,*) ‘Try again’


 case default

 write (*,*) ‘Invalid grade’ 

End select 
Print *, ‘Your grade is: ‘, grade 
Print *, ‘Select your mark from 0 to 100: ‘ 
Read *, mark 
Select case (mark)

 case (91:100)

 write (*,*) ‘Excellent!’


 case (75:90)

 write (*,*) ‘Congratulations’


 case (60:74)

 write (*,*) ‘Well done’


 case (:59)

 write (*,*) ‘Better try again’


 case default

 write (*,*) ‘Invalid mark’ 

end select 
Print *, ‘Your mark is: ‘, mark 
stop 
end 
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8.  Intrinsic and external functions in Fortran 
Fortran and other programing languages provide commonly used built-in functions, 
so-called intrinsic functions. They are: 

Intrinsic function Meaning 
ABS(X) Absolute value of X 
SQRT(X) Square root of X 
CONJG (X) Complex conjugate of X 
INT(X) Rounding off to lower integer 
NINT (X) Rounding off to closer integer 
CBRT(X) Cube root of X 
SIGN (X,Y) Print sign of Y in X 
SIN(X) Sine of X radian 
COS(X) Cosine of X radian 
TAN(X) Tangent of X radian 
ASIN(X) Arc sine of X 
ATAN(X) Arc tangent of X 
ACOS(X) Arc cosine of X 
EXP(X) Exponential of X 
MAX(a,b,c,d…) Maximum value of the series 
MIN (a,b,c,d…) Minimum value of the series 
EXPONENT(X) Exponent part of X 
FRACTION (X) Fraction part of X 
LOG(X) Natural logarithm of X 
LOG10(X) Common logarithm of X 
CONJG(X) Conjugate of complex number X 
ERF(X) Error function: 2/sqrt(pi)* integral from 0 to 

X of exp(-t*t)dt 

Calculate the hypotenuse 
Read A and B 
HYP ← square root (A**2 + B**2) 
Write A, B and HYP 
End 

------FORTRAN Source Code-----­

!Program name: HYPOTENUSE 
!Hypotenuse 
read *, A,B 
print *, ‘A=’, A, ‘ B=’, B 
hyp = sqrt (A**2 + B**2) 
print *, ‘hyp=’, hyp 
stop 
end 
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The function SIGN can be used either for scalar variables or array variables (see 
ahead). 

!Program name: SIGN 
Integer :: A(12)
 
!ARRAY A in senoidal behavior
 
A=[1,2,1,-1,-2,-1,1,2,1,-1,-2,-1]
 
write (*,*) sign(1,A)
 
! It shows 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 
Write (*,*) sign (1,-2), sign (2,-1) 
!It shows -1 -2 
Write (*,*) int(3.7), nint(3.7) 
!It shows 3 4 
write (*,*) int(2.3), nint(2.3) 
!It shows 2 2 
end 

There are other important functions that are not in-built. Then, it is needed to 
write this function. This is the case of the external function. An external function 
is declared by the FUNCTION statement followed by the name of the variable 
declaration and an argument between parentheses, FUNCTION <name> (argument). 
The argument contains the variables of the function. The function subprogram ends 
with RETURN and END statements. In the example below, X, Y, Z and SUM are 
dummy arguments used only in the FUNCTION subprogram and they are equivalent 
to A, B and C, respectively (the variable SUM has no correspondence). 

!Program name: AVERAGE 
!Average of the data A, B and C 
Program average 
Real A,B,C,AV 
Data A,B,C/5.0,2.0,3.0/ 
AV=AVRAGE(A,B,C) 
Print *, ‘The numbers ‘,A,B,C 
Print *, ‘have average= ‘,AV 
End 
REAL function AVRAGE(X,Y,Z) 
REAL X,Y,Z,SUM ! dummy arguments 
SUM=X+Y+Z 
AVRAGE=SUM/3.0 
RETURN 
end 
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9. Matrices and vectors in Fortran 
An array is a data structure to represent matrices and vectors. An array is one list of 
ordered scalar elements in one dimension (vector) or two dimensions (matrix). The 
construction of an array always requires a repetitive structure. 
First example: Building a vector 

!Program name: VECTOR 
!Building a 5-dimensional vector and sum of its elements

 REAL*8 X(5),sum

 Print *,’Input the five scalar elements of the 5-D vector:’
 

Read *,X
 sum=0.
 do 1 I=1,5

 sum=sum+X(I) 
1 continue 

Print *,’The sum of the five elements of 5-D vector is: ‘,sum 
stop
 end 

Second example: Building a matrix 

!Program name: MATRIX 
!Building a 2x3 matrix 
INTEGER*4 MAT(2,3)

 Do 1 J=1,3
 Do 1 I=1,2 

MAT(I,J)=(5*I)+(7*J)
 Print *, MAT(I,J) 

1 continue
 Print *, ‘Matrix 2x3 (5i+7j): ‘
 Print *, MAT(1,1),MAT(1,2),MAT(1,3)
 Print *, MAT(2,1),MAT(2,2),MAT(2,3)
 stop
 end 

Third example: Building a matrix 2 

!Program name:MATRIX2
 Integer :: n,i,j 

Integer, dimension(:,:), allocatable :: A
 Print *, ‘Enter the dimension, n, of the square matrix A: ‘ 

Read *, n
 Allocate ( A(n,n) )
 Do i=1,n

 Do j=1,n

 Print *, ‘A(‘,i,’,’,j,’)= ‘
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Read *, A(i,j)
 End do 

End do
 Do i=1,n

 Do j=1,n
 Print *, ‘A(‘,i,’,’,j,’)= ‘, A(i,j) 

End do
 End do 

Deallocate (A) 
stop 
end 

Fourth example:
 
The summation, S, of product elements, aibi, has a general formula below:
 

n 

S = ∑a bi i 
  
i=1
 

Where n is the number of elements of both vectors A and B. The Fortran 
implementation for this sum is: 

!Program name: SUMMATION 
!Summation of product elements, ab, of vectors A and B

 Real*8 S,A(5),B(5)

 Print *, ‘Input the five elements of vector A: ‘

 Read *, A

 Print *, ‘Input the five elements of vector B: ‘

 Read *, B

 S=0

 Do 1 I=1,5


 S=S+A(I)*B(I) 
1 continue

 Print *, ‘The summation of the product elements, ab, is: ‘, S
 stop
 end 

10. Assignment/declaration of an array and dynamic arrays 
The dimension(s) of an array can be given by the DIMENSION statement. The 
number maximum of dimensions is seven. For example: 
REAL, DIMENSION(2,3) :: A 
INTEGER, DIMENSION(10,20,3) :: B 
COMPLEX, DIMENSION(5) :: C 

In the example above, the array A has two dimension and 2*3 = 6 elements; 
the array B has three dimensions and 10*20*3 = 600 elements; the array C has one 
dimension and 5 elements. The number of elements of an array defines its size. 



 26 Quantum Mechanics: Detailed Historical, Mathematical and Computational Approaches 

It is also possible to declare the upper bounds and lower bounds of an array. For 
example: 
REAL, DIMENSION(-10:5) :: D 
REAL, DIMENSION(-10:5, -20:-1, 0:1, -1:0, 2, 2, 2) :: E 

The size of the array D is 16, from D(-10) to D(5), the upper and lower bounds, 
respectively. The size of the array E is 16*20*2*2*2*2*2=10240. 
The values of the elements of an array may be declared in several ways: 

A = (/ 1, 2, 3, 4, 5, 6 /)
 
A=[1,2,4,5,6]
 
B = A (only when they have the same dimensions)
 
DATA A /1,2,3,4,5,6/ 
 
REAL, DIMENSION(6), PARAMETER :: A = (/ 1, 2, 3, 4, 5, 6 /)
 

It is also possible to declare the values of an array for each row or column in the 
following way 

!Program name: ARRAYS 
real :: A(4), B(4,4) 
integer :: i 
A=[1.,-0.5,5.,3.3] 
B(1,:)=A ! set the first row be elements of A 
B(2,:)=[(B(1,i)**2,i=1,4)] !set the 2nd row be the square of the first row 
B(3,:)=0. ! set the third row be zero 
B(4,:)=sqrt(abs(A)) ! set the forth row be the square root of A 
Print *, A 
Print *, 
do i=1,4

 print *, B(i,1), B(i,2), B(i,3), B(i,4) 
end do 
stop 
end 

The result of this code is: 

1.0000000 –0.50000000 5.0000000 3.3000000 

1.0000000 –0.50000000 5.0000000 3.3000000 

1.0000000 0.25000000 25.000000 10.889999 

0.0000000 0.0000000 0.0000000 0.0000000 

1.0000000 0.70710677 2.2360680 1.8165902 

The PARAMETER attribute permits to include the values of an array in the 
variable declaration. 
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!Program name: DIMEN 
! Dimension and data of arrays A, B, C, D 
integer, dimension(6) :: A,B,C,D 
A=(/1,2,3,4,5,6/) 
B=2*A 
Data D/7,8,9,10,11,12/ 
Print *, A 
Print *, B 
Print *, D 
Do i=1,6

 C=A+i
 Print *, C 

end do 
stop 
end 

There is another alternative to assign values of an array: 
- array ([lowerbound]:[upperbound]) = value. 

Integer, dimension(10) :: a 
a(1:5) = 10 ! a(1) to a(5) assigned 10 
a(6:) = 5 ! a(6) to a(10 assigned 5 

The values of an array (one dimensional array) can be given using implied do 
syntax. In the example below, the array A will give four values 2*i where i=1 to 4. 
The array B will give 4 times 6, 24, values where they follow a nested do notation 
where i belongs to an equivalent inner DO loop and j belongs to an equivalent the 
outer DO loop. 

!Program name: DIMEN2 
Integer,dimension(4) :: A 
Integer,dimension(24) :: B 
A=(/ (2*i, i=1,4) /) 
B=(/ ((i*j, i=1,4), j=1,6) /) 
write (*,*) A 
write (*,*) B 
stop 
end 

An array can also be assigned by WHERE construct which respect the logical 
array expression in the WHERE statement. For example: 
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!Program name: DIMEN3 
real, dimension(10) :: A=(/ 1,2,3,4,5,6,7,8,9,10 /)
 
Real, dimension(10) :: B
 
where (A>5)


 B=1. 
Elsewhere

 B=0 
end where 
write (*,*) A, B 
stop 
end 

The UBOUND function gives the value of the upper bound of an array. The 
LBOUND function gives the value of the lower bound of an array. Remember that 
arrays of rank 1 such as A(10) or B(0:9) have 10 elements from 1 to 10 or 0 to 9 
(if integers), respectively; and that an array of rank 2 such as C(20, 0:19) has 400 
elements where first rank is indexed from 1 to 20 and the second rank is indexed 
form 0 to 19. 

!Program name: DIMEN4 
Integer,dimension (-3:4,2:5) :: i !array of rank 2 from -3 to 4 and from 2 to 5 
Integer,dimension (0:6) :: j ! array of rank 1 from 0 to 6 
Integer :: k(3,4) ! array of rank 2 from 1 to 3 and from 1 to 4 
Write (*,*) ubound (i) ! it shows 4 5 
Write (*,*) lbound (i) ! it shows -3 2 
Write (*,*) ubound (j) ! it shows 6 
write (*,*) lbound (j) ! it shows 0 
Write (*,*) ubound (i,1) ! it shows 4 
Write (*,*) ubound (i,2) ! it shows 5 
Write (*,*) lbound (i,1) ! it shows -3 
Write (*,*) lbound (i,2) ! it shows 2 
write (*,*) ubound(k) ! it shows 3 4 
write (*,*) lbound(k) ! it shows 1 1 
Stop 
End 

In a dynamic array the size of the array is unknown during compilation, but it will 
be given during the execution. They are declared by the statement ALLOCATABLE, 
followed by the function ALLOCATE and terminated with DEALLOCATE function. 
In the example below, the order n of the square matrix is defined by the user as well 
as each of its matrix elements. The symbol: in DIMENSION statement is called 
pointer. 
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!Program name: DYNAMICARRAY 
! Order n of the matrix A and its matrix elements

 Integer :: n,i,j
 Integer, dimension(:,:), allocatable :: A
 Print *, ‘Enter the dimension, n, of the square matrix A: ‘ 

Read *, n
 Allocate ( A(n,n) )
 Do i=1,n

 Do j=1,n
 Print *, ‘A(‘,i,’,’,j,’)= ‘ 

Read *, A(i,j)
 End do 

End do
 Do i=1,n


 Do j=1,n

 Print *, ‘A(‘,i,’,’,j,’)= ‘, A(i,j)
 

End do
 End do 

Deallocate (A) 
stop 
end 

The SIZE function gives the amount of the elements of an array. 

11. Array operations and intrinsic array functions in Fortran 
All mathematical operations for scalar numbers apply to arrays as well, element-by­
element. 

Likewise scalar numbers, there are also intrinsic functions for arrays. For 
example: 

- MAXVAL(array): returns the maximum value of an array 
- MINVAL(array): returns the minimum value of an array 
- PRODUCT(array): returns the product of all elements 
- SUM(array): returns the sum of all elements of an array 
- SIZE(array): returns the number of elements of an array 
- TRANSPOSE(A): returns the transpose of the matrix A 
- SHAPE(A): returns the shape of the matrix A 
- RESHAPE(array,(dimen)): transforms a vector into matrix 
- MERGE(A,B,mask): builds a matrix from A and B according to the logical 

values of the mask (true or false). 
- SIGN(X,A): prints sign of each element of array A on X. 
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- MATMUL(A,B): matrix multiplication for the dimensions (m,k) and (k,n) of the 
matrices A and B, respectively 

- DOT_PRODUCT(A,B): scalar product of vectors A and B of the same 
dimensions. 

!Program name: ARRAYS2 
real :: A(4), B(4), c(4), D(4,4), E(4,4),F(4,4), G(4,4) 
integer :: i 
A=[1.,0.5,-3.,5.5] 
B=(2*A)/3 
c=B**2 
D(1,:)=A 
D(2,:)=(B*3)/2 
D(3,:)=sqrt(C) 
D(4,:)=A+B+C 
E=D*3 
print *, A 
Print *, 
Print *, B 
print *, 
Print *, C 
print *, 
do i=1,4 
print *, D(i,1), D(i,2), D(i,3), D(i,4) 
end do 
print *, 
do i=1,4 
print *, E(i,1), E(i,2), E(i,3), E(i,4) 
end do 
print *, 
print *, maxval(A), minval(B), product(C), sum(D), size(E) 
print *, 
F=transpose(E) 
do i=1,4 
print *, F(i,1), F(i,2), F(i,3), F(i,4) 
end do 
print *, 
print *, dot_product(A,B) 
print *, 
G=matmul(D,E) 
do i=1,4 
print *, G(i,1), G(i,2), G(i,3), G(i,4) 
end do 
stop 
end 
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12. Subprograms in Fortran 
There are three types of subprograms within a main program: subroutines, external 
functions and modules. The main program invokes the subroutine/function/module 
using specific statements for each case. 

The statement CALL is a kind of branching transferring the control to the named 
subroutine. Then, each subroutine has a specific name. The subroutine begins with 
the statement SUBROUTINE and finishes with the statement RETURN which 
transfers back the control to the main program. 

!Program name: SUBROUTINE 
!Building a 3x3 matrix and its transpose 
INTEGER*4 F(3,3),FT(3,3)

 Do 1 J=1,3
 Do 1 I=1,3

 F(I,J)=(5*I)+(7*J)
 Print *, F(I,J) 

1 continue
 Print *, ‘Matrix F 3x3 (5i+7j): ‘ 

Print *, F(1,1),F(1,2),F(1,3) 
Print *, F(2,1),F(2,2),F(2,3)

 Print *, F(3,1),F(3,2),F(3,3)

 Call MATRNS(F,FT)

 Print *, ‘Matrix transpose FT 3x3 (5j+7i): ‘

 Print *, FT(1,1),FT(1,2),FT(1,3)

 Print *, FT(2,1),FT(2,2),FT(2,3)

 Print *, FT(3,1),FT(3,2),FT(3,3)

 stop

 end


 Subroutine MATRNS(F,FT) 
Integer*4 F(3,3),FT(3,3) 
Do 2 J=1,3

 Do 2 I=1,3

 FT(J,I)= F(I,J)
 

2 continue
 return
 end 

In the next subroutine, there are dummy variables (arguments) which are used 
only in the subprogram. The dummy arguments are internal and replace external 
variables within a subroutine. In addition, the subprogram can associate each 
variable of the main program with a dummy variable of the subprogram in order 
of appearance. One can see in the example below that the variables x, y, z, disc are 
interchanged to a, b, c and d, respectively. Then, a, b, c and d are called dummy 
arguments. 
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!Program name: SUBROUTINE2 
program subroutine 
implicit none

 real :: x, y, z, disc
 x = 1.0
 y = 5.0
 z = 2.0
 call discriminant(x, y, z, disc)

 Print *, “The value of the discriminant is”

 Print *, disc 

end program subroutine 
subroutine discriminant (a, b, c, d) 
implicit none

 ! dummy arguments
 real :: a
 real :: b
 real :: c

 real :: d


 d = b * b - 4.0 * a * c
 

end subroutine discriminant 

In the next example, we use the INTERFACE statement to build two matrices 
(M.N) from two vectors (U,V) and to merge both matrices in another matrix, R. 

!Program name: SUBROUTINE3 
integer :: V(6), U(6), M(2,3), N(2,3), R(2,3)
 
logical :: T(6), L(2,3)
 
interface


 subroutine write_array(A)

 integer :: A(:,:)

 end subroutine write_array

 subroutine write_logical_array(A)

 logical :: A(:,:)

 end subroutine write_logical_array
 

end interface
 

V=[11,12,13,14,15,16]
 
U=[1,2,3,4,5,6]
 
T=[.true., .false., .true., .true., .false., .false.]
 
M=reshape(V,(/2,3/))
 
N=reshape(U,(/2,3/))
 
L=reshape(T,(/2,3/))
 
R=merge(M,N,L)
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call write_array(M)
 
call write_array(N)
 
call write_logical_array(L)
 
call write_array(R)
 
end
 

subroutine write_array(A)
 
integer :: A(:,:)
 
do i=lbound(A,1), ubound(A,1)


 write (*,*) (A(i,j), j=lbound(A,2),ubound(A,2)) 
end do 
return 
end subroutine write_array 
subroutine write_logical_array(A)
 
logical :: A(:,:)
 
do i=lbound(A,1), ubound(A,1)


 write (*,*) (A(i,j), j=lbound(A,2),ubound(A,2)) 
end do 
return 
end subroutine write_logical_array 

The INTERFACE statement gives the full knowledge of the types and 
characteristics of the dummy arguments that are used in the subroutines. If one 
removes the INTERFACE construct from the program SUBROUTINE3 (above), 
there will be several errors of the type “procedure <subroutine_name> at (1) with 
assumed-shape dummy argument ‘a’ must have an explicit interface” for each CALL 
statement. 

Any external function should be listed in INTERFACE block along with the 
declaration of its arguments and their types and the type of function value. For 
each external function used in module or subroutine should have an entry in an 
interface block. The syntax of the INTERFACE block is shown below. Notice that 
INTENT(IN) is optional. 

INTERFACE 
Type FUNCTION name (arg-1, arg-2,...,arg-n) 
Type, INTENT(IN) :: arg-1 
Type, INTENT(IN) :: arg-2 
................
 

Type, INTENT(IN) :: arg-n
 END FUNCTION name 

..............other functions......... 
END INTERFACE 

As stated in a previous section, an external function is a subprogram whose 
function’s variable gives a specific result according to an input. In the example 
below, the variable ‘a’ of the main program is associated with the variable of the 
function ‘circle_area’ and the input is ‘r’. 
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a = circle_area(r) 

The function ‘circle_area’ has an expression for the area of the circle written in 
the subprogram ‘function circle_area(r)’. It calculates this area according to the input 
‘r’. The variable ‘a’ is associated with ‘circle_area(r)’ in the main program to show 
the final result. 

!Name of the program: FUNCTION
 Real :: a, r
 character (len=1) :: answer
 Print *, ‘Input the radius of the circle: ‘
 Read *, r 

! Variable function: 
a = circle_area(r) 

 Print *, ‘The area of a circle with radius ‘, r, ‘ is: ‘
 Print *, a 

10 Print *, ‘Do you want to calculate another area of a circle (Y/N)?’
 Read *, answer
 If (answer == ‘Y’) then

 Print *, ‘Input the radius of the circle: ‘
 Read *, r
 a = circle_area(r)
 Print *, ‘The area of a circle with radius ‘, r, ‘ is: ‘
 Print *, a
 Go to 10

 else
 print *, ‘Ok. Goodbye.’

 end if 
Stop 
End 
! this function computes the area of a circle with radius r 
Function circle_area (r) 
implicit none

 real :: circle_area
 ! local variables 

real :: r
 real :: pi
 pi = 4 * atan (1.0) 

area_of_circle = pi * r**2 
end function circle_area 

The explicit function can also be declared from FUNC (variable) argument 
which is given at the beginning of the code. See the example below: 
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!program name: FUNCTION2 
real :: r 
func(r) = (4*atan(1.0))*r**2 
Print *, ‘give the radius of the circle: ‘ 
Read *, r 
print *, ‘the area of the circle is: ‘, func(r) 
stop 
end 

The argument FUNC as well as the subprogram FUNCTION can have more 
than one variable. See the examples below: 

!Program name: FUNCTION3 
!Euler’s method for differential equation dy/dx=-xy 
!The exact solution: y=exp(-x^2/2) 
!y(n+1)= y(n)+h(-xy) 
!Y(n+1) <=> X+h 
real :: x, y, h, exact, error 
integer :: i 
func(x,y)=-x*y 
h=0.01 
y=1. 
do i=0,1

 x=i
 y=y+h*func(x,y) 

exact=exp((-(x+h)**2)/2) 
error=exact-y

 print *, i, x+h, y, exact, error 
end do 
stop 
end 

The variables of the explicit function can be declared in the PRINT statement 
when calling the respective function. 

!Program name: FUNCTION4 
function f(a,b) 
integer :: a 
real :: b, f 
f=b**2-4*a*b 
return 
end function 
program function4 
real :: f 
print *, ‘a=4; b=2.2’, ‘ b^2-4ab= ‘, f(4, 2.2) 
end program 
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The statement INTENT(IN) is used for variables which are not changed in the 
subprogram/main program while for INTENT(OUT) statement the variables in the 
subprogram/main program are overwritten. 

If an external function or subroutine has to call itself again in the same 
subprogram, then it is necessary to include the RECURSIVE statement to declare 
the FUNCTION or SUBROUTINE statements. In addition, in the same line the 
RESULT statement also has to be used. 

- RECURSIVE FUNCTION name (variable_function) RESULT (dummy­
argument) 

In the example below, the variable ‘i’ is associated with the dummy argument ‘n’ 
and the variable ‘f’ is associated with the dummy argument ‘fac’. The function 
‘factorial(n)’ is called recursively in the line: 

- fac = n *factorial (n-1) 

But, without the RECURSIVE statement, the code cannot return to the same 
calculation (within this function) again. 

!Program name: RECURSIVE 
!calculate the factorial of a number n! 
program recursive

 integer :: i, f
 character (len=1) :: answer
 Print *, ‘Input the value to be factorized: ‘
 Read *, i 

! Variable function:
 f = factorial(i)
 Print *, ‘The value of factorial of’, i, ‘ is: ‘
 Print *, f 

10 Print *, ‘Do you want to calculate another factorial (Y/N)?’
 Read *, answer
 If (answer == ‘Y’) then

 Print *, ‘Input another value to be factorized: ‘
 Read *, i
 f = factorial(i)
 Print *, ‘The value of the factorial of ‘, i, ‘ is: ‘
 Print *, f
 Go to 10

 else
 print *, ‘Ok. Goodbye.’

 end if 
end program recursive 
! computes the factorial of n (n!) 
recursive function factorial (n) result (fac) 
! function result 



 Basics of Fortran 37 

implicit none
 ! dummy arguments
 integer :: fac
 integer, intent (in) :: n
 select case (n)

 case (0:1) 
fac = 1

 case default 
fac = n * factorial (n-1) !the function is called recursively here.

 end select 
end function factorial 

The code can be written without dummy arguments and using IF-ELSE construct 
(see the example below). 

!Program name: RECURSIVE2 
program factorial 
integer :: n, f 
character (len=1) :: answer

 Print *, ‘Input the value to be factorized: ‘ 
Read *, n

 f = factorial(n) 
Print *, ‘The value of factorial of’, n, ‘ is: ‘

 Print *, f 
10 Print *, ‘Do you want to calculate another factorial (Y/N)?’

 Read *, answer
 If (answer == ‘Y’) then

 Print *, ‘Input another value to be factorized: ‘ 
Read *, n

 f = factorial(n) 
Print *, ‘The value of the factorial of ‘, n, ‘ is: ‘

 Print *, f
 Go to 10

 else
 print *, ‘Ok. Goodbye.’

 end if 
end program factorial 
! computes the factorial of n (n!) 
recursive function factorial (n) result (f) 
! function result 
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implicit none
 ! dummy arguments
 integer :: f

 integer, intent(in) :: n


 If (n == 0) then

 f = 1
 else 

f = n * factorial (n-1) !the function is called recursively here
 end if 

end function factorial 

The MODULE-USE construct is another type of subprogram, data and interface 
block and it provides a way for splitting the code in multiple sections. Within the 
MODULE construct it can contain a subroutine and CONTAINS statement. This 
statement links the variable values in a subprogram (subroutine within a module 
construct or not) with the main program and the USE statement makes them 
available. The MODULE construct can have subroutine and functions subprograms 
inside. When using FUNCTION statement it has to accompanied by the RESULT 
statement. See the example below: 

!Program name: MODULE 
!Area of the circle and exponent - module example 
module circle_exponent 
Implicit none 
real, parameter :: pi = 3.1415926536

 real, parameter :: e= 2.7182818284 
contains

 subroutine consts()
 print*, “Pi = “, pi
 Print*, ‘e= ‘, e


 end subroutine consts


 function areaCircle(r) result(a)

 implicit none 

real::r
 real::a !dummy argument 

a = pi * r**2
 end function areaCircle
 function exponent(x) result(epx)


 implicit none

 real::x

 real::epx!dummy argument
 

epx = e**x
 end function exponent 

end module circle_exponent 
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!main program 
use circle_exponent 
Real :: r 
Real :: x

 call consts()
 Print *, ‘Input the radius of the circle: ‘
 read *, r
 print*, ‘Area of a circle with radius’, r, ‘= ‘, areaCircle(r)
 Print *, ‘Input the exponent of the base e: ‘
 read *, x
 print*, ‘The base e power to’, x, ‘= ‘, exponent(x)
 Print *, ‘Good bye’ 

stop 
end 

If one removes the MODULE construct from the program above (MODULE), 
there will be several errors of several distinguished types. Another example of 
MODULE construct is given in Section 21 for the program BISECTION3. In this 
program (BISECTION3), one can see that RESULT statement appears without the 
RECURSIVE statement in the FUNCTION subprogram. 

13. Logical variables in Fortran 
When it is necessary to store and manipulate logical values explicitly (not using IF 
conditionals), as in the example below, Fortran provides the logical variables. 

In the example below, the code begins declaring two logical variables: done 
and even. This code is a nice example of iteration process using logical variables (in 
that case, variable done) and how to use logical variables for a series interchanging 
the sign of the sum for odd and even values (in that case, using variable even). The 
variable done is attributed .FALSE. until it reaches the variable abs (X-XOLD) 
lower than 0.01 .or. the variable I greater than 100 when the code is stopped. While 
variable done is .FALSE. the conditional of line 1 is not followed and it goes to ELSE 
statement below. 

The logical value in variable even plus the ‘even= .not. even’ argument are used 
to afford the interchanging type of sum executed at each iteration. There are two 
types of the sum in the code. 

X=X-(1./float(I)) 
X=X+(1./float(I)) 

Notice that X=X-(1./float(I)) is equivalent to X=X-1./float(I) and that X=X+(1./ 
float(I)) is equivalent to X=X+1./float(I). Then, the fraction includes only the 
number closer to division operator, /, of the numerator when there is a summation 
in the numerator. The FLOAT statement converts the integer number into a default 
real value. 



 

 

40 Quantum Mechanics: Detailed Historical, Mathematical and Computational Approaches 

For even=.TRUE., the sum X=X+(1./float(I)) is used for the first, third, fifth, 
and so on, iterations (i.e., I=1, I=3, I=5,...), while the sum X=X-(1./float(I)) is used 
for the second, fourth, sixth, and so on, iterations (i.e., I=2, I=4, I=6, ...). 

X = 0 I = 1 X’ = 0 + 1 = 1 
X = 1 I = 2 X’ = 1–1/2 = 0.5000 
X = 0.500 I = 3 X’ = 0.500 + 1/3 = 0.8333 
X = 0.833 I = 4 X’ = 0.833–1/4 = 0.5833 

Then, at each first iteration, even becomes ‘.not. even’; in the second iteration, 
it becomes ‘.not. .not. even’ which yields ‘even=.true’.; in the third iteration, even 
becomes ‘.not. even’ again; in the forth iteration, it becomes ‘.not. .not. even’ which 
yields ‘even=.true.’ again, and so on. 

Just out of curiosity, if even=.FALSE, it would give a reversed operation during 
the iteration, that is, the sum X=X+(1./float(I)) would be used for the first, third, 
fifth, and so on, iterations, while the sum X=X-(1./float(I)) would be used for the 
second, fourth, sixth, and so on, iterations. As a consequence, all the values of X 
would have negative sign as depicted below: 

X = 0 I = 1 X’ = 0–1= –1 
X = –1 I = 2 X’ = –1 + 1/2 = –0.5000 
X = –0.500 I = 3 X’ = –0.500–1/3 = –0.8333 
X = –0.833 I = 4 X’ = –0.833+1/4 = –0.5833 

The sum in this code has an alternating series with positive sign for odd 
denominators (I) and negative sign for even denominators. This series is equivalent 
to the Ln 2. The series ranges from i = 1 to i = infinite. However, in the code below, 
it is truncated to i = 100. Another truncation is the difference between successive 
values of X during the iteration. When it is 0.01 or lower, the loop is interrupted. 

∞ i+11 1 ( 1) 1 − x = 1 ... ∑− + − + =  = ln 2
 
2 3 4 i=1 i
 

!Program name: LOGICAL 
!Value of Ln 2

 Logical done/.false./, even/.true./ ! first done and subsequent done values are 
false until either condition is met at the end of the code.
 I=0
 X=0 

1 If (done) then ! first done and subsequent done values are false and the code 
goes to else

 Print *, ‘Iteration is over. Ln 2 is: ‘, X

 stop
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 else
 I=I+1
 XOLD=X !first X is zero (even number)
 even= .not. even ! swap even and not even at each iteration 
If (even) X=X-(1./float(I)) ! the second, fourth, sixth,... X values are 

computed here.
 If (.not. even) X=X+(1./float(I)) !the first, third, fifth,... X values are 
computed here.
 Print *, ‘XOLD:’, XOLD, ‘I:’, I, ‘X:’, X

 done=(abs(X-XOLD) .lt. 0.01) .or. (I .ge. 100)

 go to 1


 end if

 end
 

The first lines of the output are: 
XOLD: 0.0000000 I: 1 X: 1.0000000 
XOLD: 1.0000000 I: 2 X: 0.50000000 
XOLD: 0.50000000 I: 3 X: 0.83333331 
XOLD: 0.83333331 I: 4 X: 0.58333331 
And the last lines of the output are: 
XOLD: 0.69827485 I: 98 X: 0.68807077 
XOLD: 0.68807077 I: 99 X: 0.69817179 
XOLD: 0.69817179 I: 100 X: 0.68817180 
Iteration is over. Ln 2 is: 0.68817180 

14. Data type construct in Fortran 
The TYPE construct is used to represent a library or database consisting of objects/ 
components of different types (called structure). The TYPE statement (TYPE type_ 
name) defines the name of the library, i.e., the set of components within the type 
name (structure). Each member of the library/database is defined by statement TYPE 
as well whose syntax is: TYPE(type_name) :: member_number. The components 
each member are variables that are declared in the following syntax: member_ 
number%component=”constant-name”. 
First example: 

!Program name: TYPE 
program bookstore 
!type declaration

 type Books
 character(len = 50) :: title
 character(len = 50) :: author
 character(len = 150) :: subject 
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 integer :: year

 end type Books


 !declaring type variables
 type(Books) :: book1

 type(Books) :: book2


 !enter the components of the structure
 write(*,*) ‘Enter the title of the book 1’

 Read *, book1%title
 
 Write (*,*) ‘Enter the author of the book 1’

 Read *, book1%author
 
 Write (*,*) ‘Enter the subject of the book 1’

 Read *, book1%subject
 
 Write (*,*) ‘Enter the year of the book 1’

 Read *, book1%year

 write(*,*) ‘Enter the title of the book 2’

 Read *, book2%title
 
 Write (*,*) ‘Enter the author of the book 2’

 Read *, book2%author
 
 Write (*,*) ‘Enter the subject of the book 2’

 Read *, book2%subject
 
 Write (*,*) ‘Enter the year of the book 2’

 Read *, book2%year

 !display book info
 Print *, book1%title
 Print *, book1%author
 Print *, book1%subject
 Print *, book1%year
 Print *, book2%title
 Print *, book2%author
 Print *, book2%subject
 Print *, book2%year 

end program bookstore 

Second example: 

!Program name: TYPE2 
Program Bookstore 
Integer, dimension(:), allocatable :: N 
Print *, ‘Enter the number of books of the bookstore: ‘ 
Read *, n 
Allocate ( N(n) ) 
!type declaration 
type Books

 character(len = 50) :: title 
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 character(len = 50) :: author

 character(len = 150) :: subject

 integer :: year
 

end type Books 
do i=1,n 
!declaring type variables 
type(Books) :: booki 
end do 
do i=1,n 
!enter the components of the structure

 write(*,*) ‘Enter the title of the book ‘, i
 Read *, booki%title 
 Write (*,*) ‘Enter the author of the book ‘, i
 Read *, booki%author 
 Write (*,*) ‘Enter the subject of the book ‘, i
 Read *, booki%subject 
 Write (*,*) ‘Enter the year of the book ‘, i
 Read *, booki%year 

End do 
do i=1,n

 !display book info
 Print *, booki%title
 Print *, booki%author
 Print *, booki%subject
 Print *, booki%year 

end do 
stop 
end program Bookstore 

15.  Data files in Fortran 
Fortran allows to create data files (.dat) and to write data files. A  data file must 
have a unit number (from 1–99) and a file name in order to identify this file. The 
OPEN statement allows to create a new data file and to write data in it using WRITE 
(number_of_file, *). The statement CLOSE(number_of_file) closes the data file 
created. 

!Program name: DATAFILE 
Integer, dimension (:,:), allocatable :: a 
integer :: i, j, c, l 
Print *, ‘Give the number of columns of the matrix a: ‘ 
Read *, c 
Print *, ‘Give the number of lines of the matrix a: ‘ 
Read *, l 
Allocate (a(c,l)) 
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!Generate the scalar data of the matrix a 
do i=1, c

 do j= 1, l
 a(i,j)= i*j 

end do 
end do 
!create data1.dat (replace if it already exists) and write the a(i,j) 
open(1,file=’data1.dat’, status=’replace’) 
do i=1, c

 do j=1, l
 write(1,*) a(i,j) 

end do 
end do 
close(1) 
!Display the data recorded in data1.dat 
do i=1, c

 do j=1, l
 write(*,*), a(i,j) 

end do 
end do 
Deallocate(a) 
stop 
end 

16.  Randomization in Fortran 
The Fortran subroutine CALL RANDOM_NUMBER(r) generates random numbers 
in the range (0,1). It gives a pseudorandom sequence (with one or more numbers 
depending on the loop), i.e., if one starts the sequence at the same point, it will give 
the same sequence even after recompilation. See the example below. In this case, the 
use of CALL RANDOM_SEED() at the beginning of the code is optional because it 
does not change the result. 

!program name: RANDOM_TEST
implicit none
 
real :: r, x
 
integer :: i
 
call random_seed()
 
10 call random_number(r)
 
print *, r
 
print *,
 
do i=1,10

 call random_number(x)
 print *, x 

end do 
stop 
end 
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The result is:
 0.99755955
 0.56682467
 0.96591532
 0.74792767
 0.36739087
 0.48063689
 7.37542510E-02
 5.35517931E-03
 0.34708124
 0.34224379
 0.21795171 

This result is the same every time you run the code. That’s why it is a 
pseudorandom subroutine. The sequence is repeated or is the same once you start 
the code. 

One way to circumvent this limitation by using CALL RANDOM_SEED with 
its arguments SIZE and SEED and the subroutine CALL DATE_AND_TIME. 

The subroutine CALL DATE_AND_TIME generates a one-dimensional array 
with eight elements. The first three elements or values are related to the date in 
the form yyyy mm dd, i.e., the year, month and day. The fourth value is the time 
difference with respect to Coordinated Universal Time (UTC) in minutes. The next 
values correspond to the CPU clock time: hour from 0 to 23 (value 5); minutes from 
0 to 59 (value 6); seconds from 0 to 59 (value 7); and milliseconds from 0 to 999 
(value 8). 

In the code below, every time you run the code, it gives a different number. The 
array dzt has 8 elements from the eight values of the subroutine CALL DATE_AND_ 
TIME. The dynamic vector ‘array’ has 15 elements because the argument PUT in the 
subroutine CALL RANDOM_SEED imposes a minimum size for the array (12 at 
minimum). The line ‘array(8)=dzt(1)’ picks the first value of the subroutine CALL 
DATE_AND_TIME, i.e., the year for the seed of the CALL RANDOM_SEED. 
Then, every time you run the code, it depicts the same value. On the other hand, the 
line ‘array(8)=dzt(8)’ picks the eighth value of the subroutine CALL DATE_AND_ 
TIME, i.e., the milliseconds of CPU clock for the seed of the CALL RANDOM_ 
SEED. Then, every time you run the code, it is depicted a different value. 

!program name: RANDOM 
integer :: dzt(8) 
integer, dimension(:), allocatable :: array 
real :: r 
allocate(array(15)) 
call date_and_time(values=dzt) 
!print *, dzt !OPTIONAL 
!program name: RANDOM 
integer :: dzt(8) 
integer, dimension(:), allocatable :: array 
real :: r 



 46 Quantum Mechanics: Detailed Historical, Mathematical and Computational Approaches 

allocate(array(15)) 
call date_and_time(values=dzt) 
!print *, dzt !OPTIONAL 
array(8) = dzt(1) !It picks the first value (year) of CALL DATE_AND_TIME 
!print *, array !OPTIONAL 
call random_seed(put=array) 
call random_number(r) 
print *,r 
array(8) = dzt(8) !It picks the eighth value (milliseconds) of CALL DATE_ 
AND_TIME 
!print *, array !OPTIONAL 
call random_seed(put=array) 
call random_number(r) 
print *,r 
stop 
end 

Exercise 
By knowing that the wave function of a particle in ring can be described by the 
function cosine of mq where m is an integer and q is the angle in radian unit (Chapter 
sixteen), write a Fortran program that plots this function from q = 0 to q = 2p with n 
(grid) points. Use the argument grid (equivalent to the number of points of a function). 
This code must contain: 

 1.  User´s entry for m where m=0, ±1, ±2, ... 
 2.  User´s number of points, grid. The grid should be 100 ≤ grid ≤ 300. 
 3.  The interval, h, between the points of the function is given by: 2p/grid. 
 4.  Output file (.dat) in the format to be read in GNUPLOT having the data of the 

wave function, that is, a column with n points (grid) of x=theta (0 ≤ theta ≤ 2p) 
and n points (grid) of y=cos(theta*m). This block should be at the end of the 
program. See the example below. 

Note: The free program GNUPLOT can be downloaded from http://www.gnuplot.
 
info/
 
Tips:
 
(1) Example of DO loop block containing the x and y variables:
 
do i = 0, grid

 x(i) = i * h
 y(i) = cos (m*i)
 write (*,*) i, ‘X(i)=’, x(i),’Y(i)=’, y(i) 

end do 

http://www.gnuplot.info
http://www.gnuplot.info
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(2) Example of Fortran block to export data to generate a plot in GNUPLOT:
 
open(7,file=fileout,status=’replace’)
 
do i=1,grid


 write (7,’(f7.3,3e16.8,f12.6)’) x(i), y(i)

 End do

 close(7)
 

References cited 
Williams, T., Kelley, C., Merritt, E.A. et al. 2018. Gnuplot 5.2—An interactive 
plotting program. 



 

 

Basics of Numerical 
Calculation and Series 2 
1. Introduction 
There are three basic numerical operations in computational physics: quadrature (or 
numerical integration), numerical differentiation and finding the roots. In addition, 
the Taylor and MacLaurin series and the differentiation processes due to their use 
in differential equations and perturbation theory (next sections) are very important 
for several numerical calculations. At the end of this chapter we see some basics 
of derivatives. We also present some information about Fourier series and Fourier 
transform, which are not relevant to our numerical calculations, but they are important 
to quantum mechanics and are related to series method. 

2. Power series method 
A power series is an expansion of a function into an infinite sum of terms in which 
the variable x has the form of an infinitesimal polynomial. It is used to represent a 
determined function. For example, the power series of the function ex is: 

2 3 4 5 
x x x x x e =1+ +  x + + + +  ...

2! 3! 4! 5! 
Example : e2 = 7.389056 

22 

e2 =1 2  value = 5+ +
2!
 

2 22 23
 

e =1 2 + value = 6.333
+ +
2! 3! 

2 3 4 52 2 2 2 e2 =1 2 + +  +  value =+ +  7.266
2! 3! 4! 5! 

2 3 4 5 6 7 
2 2 2 2 2 2 2 e =1 2 + +  + +  +  value = 7.3809+ +  

2! 3! 4! 5! 6! 7! 

Many functions can be represented as a power series of the general formula: 

f ( ) = a xn ,x ∑
∞ 

n n = 0,1, 2,3,... 
n =0 
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Where n is an integer number and an is a constant. Then, we have: 
2 3 4 5( ) = a + a x  + a x  + a x  + a x  + a x  + ...f x 0 1 2 3 4 5 

Let us assume a partial sum, Sn(x), below: 
2 3 4 k( ) = a + a x  + a x  + a x  + a x  + ... a x  S x  +k 0 1 2 3 4 k 

If, for some x, the limit given below exists, then the power series terminates or 
converges. 

k 

lim S ( ) = lim a xkxk ∑ k n→∞ n→∞ n=0 

When the power series does not correspond to the limit above for any value of x, 
then the power series diverges or does not terminate. For example, the series below 
converges to exp(x). 
∞ 2 31 x x x∑ =1+ +x + + ... ⇒ e 

n=0 k ! 2 6 
Then, it is important to know about convergent and divergent series. If a series 

has a finite sum, it is called convergent. Otherwise, it is called divergent. This is 
a very important classification since divergent series cannot be used in numerical 
calculation. Let us define Sn as the partial sum of the n terms of the series. The letter 
n can be any integer. 
S1 = a1 

S = a + a2 1 2 

S = a + a + a3 1 2 3 

 

S = a + a + a + + an 1 2 3 n 

As n increases, the partial sum may increase without any limit where the series 
diverges, or it may oscillate as in the series (1-2+3-4+5-...) which can converge as 
in the telescoping series or it may have a more complicated behavior. When the 
partial sum approaches a limiting value, the series converges. Then, when the series 
converges, we have the following condition: 

lim Sn = S ∴converges ! 
n→∞ 

Where S is the sum of the series. The difference between S and Sn is called 
remainder, Rn. 

Rn = S Sn− 

The power series method is powerful tool for solving differential equations with 
non-constant coefficients from Hermite, Legendre, Laguerre differential equations 
(Chapter four) and the energy solution for one-particle quantum harmonic oscillator 
(Chapter fifteen). In order to solve these differential equations, we need to find the 
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power series of the first two derivatives of the function represented as a power series 
as well. 

f ( ) = ∑
∞ 

a x  ,x n
n n = 0,1, 2,3,... 

n=0 

Its first derivative is given below: 

n−1f '( ) = ∑
∞ 

nx na x 
n=1 

Let us do the power equalization for the expressions above, i.e., we have to 
change the previous summation in order to begin with n=0. In fact, for the summation 
of the first derivative, f’(x), if n starts at 0 or at 1 does not change the result since for 
n=0 the second the corresponding term is zero. Then: 
∞ ∞ 

na x n = na x n∑ n ∑ n 
n=1 n=0 

Its second derivative is: 

n−2f '' x = ∑
∞ 

( − n( ) n n  1) a x  
n=2 

Let us do the power equalization so that n starts at zero. 

for : ( −n n 1)
 
= 2 → 2(2 − = 2
n 1) 

n = 3 3(3 1)→  − = 6 
for : ( n + 2)( n +1)
 
= 0 (0 + =  2
n → +  2)(0 1) 
=1 (1 + =  6n → + 2)(1 1) 

then : ( −n n 1) (n 2)( n +1)= +  
n=2 n=0 

∞ ∞ 

∑n n ( − = ∑( )+ 2 ( ) 1finally : 1) n n + 
n=2 n=0 

Hence: 

' x = ∑
∞

( )+ 2 ( )1 an+2f ' ( ) n n + xn 

n=0 

The procedure of the power equalization above will be used to solve any 
differential equation with power series method. Please, be aware that the procedure 
of power equalization is of the power series method and is different from that of the 
Frobenius method (see Chapter four). 

The function f(x) which can be described by a series is called generating 
function, G(an,x) given by: 

(  ; )  = a  x  nG an x ∑
∞ 

n 
n=0 
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“A generating function is a device somewhat similar to a bag. Instead of carrying 
many little objects detachedly, which could be embarrassing, we put them all in a 
bag, and then we have only one object to carry, the bag” George Pólya once said. 

3. Fourier series and Euler’s formula 
Fourier proved that any continuous function could be represented by an infinite 
sum of sine and cosine waves. In the Fourier series, the sines and cosines are used 
to represent periodic functions. On the other hand, the non-periodic functions are 
represented by Fourier integral or transform (next section). 

Consider the particle P moving in a ring (see Chapter fifteen) as an example of 
periodic function. The motion of the particle P in the ring is given by the independent 
coordinates x and y: 
x = Acos θ = Acos w ⋅ t 
= sin θ = Asin y A  w ⋅ t 

Where w is the angular velocity, A is the amplitude and t is time. 
We can use a single equation of the motion of P encompassing x and y coordinates 

shown below which can be rewritten as a Euler’s formula (see its derivation ahead). 

x iy = Acos w t iAsin z = +  ⋅ + w ⋅ t 
Euler : z = Ae iwt 

We want to expand a given periodic function in a series of sines and cosines. 
Firstly, we start with functions of period 2p and, then, the functions of sin x and cos 
x or sin nx and cos nx (n being an integer) have period 2p. Let us suppose a given 
function of period 2p, f(x), represented by the following equation: 

f ( ) = 1 a + a cos x a  cos 2 x a  cos3 x + + x + ...2 0 1 2 3 

sin x b  sin 2 x b  sin 3 x + ... +b + +1 2 3 

Then, we have to find the formulas of the coefficients an and bn for the above 
expansion. The derivation of the following equations can be found elsewhere (Boas, 
2006). These coefficients are used to represent square waves, for example. 

n p 
1 p
∫ f ( ) cos ( ) nx dxa = x 
−p 

n 
1 p
∫ f ( )sin ( ) nx dxb = x 

p −p 

For even or odd functions, the coefficients formulas for an and bn are different 
from those used for square waves. 

 2 P n xp
bn = ∫ f ( )sin x dx

(  ) :  odd  P 0 Pf x 
 a = 0 n
 

2 P p
 n x
an = ∫ f ( ) cos x dx

f (  ) :   P 0 Px even 
 b = 0 n 
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Where the interval of length P is the period of the Fourier series. 
An even function presents symmetry along the vertical axis. An odd function 

has another type of symmetry, i.e., an odd function has symmetry with respect to the 
origin. 

f ( )  x ⇒ odd : f ( )  x = − −f ( x) 
1Examples  : f x( )  = ,  f x  ( )  = x 3 ,  f x  ( )  = x5

x
 
f ( )  x ⇒ even : f ( )  x = f (−
x) 

Examples  : f x( )  = x2 ,  f x  ( )  = x  ,  f x  ( )  = x  

The general Fourier series for even-odd functions is: 

a N 
0 ∑  2pnx   2pnx 

 f x( ) = + an cos   + bn sin  2 n=1   P   P  

Let us now apply the Fourier series to a square wave. A square wave has a 
non-sinusoidal periodic waveform in which the amplitude alternates between fixed 
minimum and maximum values with the same interval between minimum and 
maximum. Let us imagine the minimum in f(x) as 0 and the maximum as 1 and the 
interval between minimum and maximum is p. 

 0, − <p x < 0  
f x( )  =  

1, 0 < x < p  

This square wave can be represented by the following Fourier series (Boas, 2006): 

1 2  sin x sin 3 x sin 5 x f x( ) = +   + + + ...2 p  1 3 5  

The Fourier series can also be represented in the complex form. Since the sines 
and cosines can be represented in terms of the complex exponential according to 
Euler’s formula, then we have: 

e inx − e−inx 

sin nx = 
2i 

e inx + e −inx 

cos nx = 
2 

The Euler’s formula is 

eix = cosx + i sin x 

The proof for Euler’s equation is given here. Let us firstly prove the Euler´s 
formula from the summation below: 

2
x x x3 x 4 x ne =1+ +x  + + 

2! 3! 4! n! 
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Then, by replacing x into ix, we have: 

ix ( )  ix 2 ( )  ix 3 ( )  ix 4 ( )  ix 5 ( )ix 6

eix =1+ + + + + + + ...
1! 2! 3! 4! 5! 6! 
ix x2 ix3 4 

ix x ix5 x 6 

e =1+ − −  + +  − + ...  
1! 2! 3! 4! 5! 6! 

2 4 6 3 5 
ix  x x x   x x   x   

e = 1 −  +  − + ...   + i   − + + ...  
  2! 4! 6!  1!  3! 5! 

e ix = cos x i  + sin
 x 
As a consequence, one continuous function can be represented as: 

f (x ) = c  −
0+c e  ix 

1 + c e ix + c e  2ix + c −
2 e 2ix

−1 2 − + ...

The Fourier series in the complex form becomes 

1 c
P

x e −inp P 
n = f ( ) x dx

2P ∫−P 

n

∑
=+∞
 

f ( )  x  = c inx
 
n e  

n=−∞ 

To sum up, the Fourier series changes the time domain (represented by the 
period T of a wave) of a continuous function into its frequency domain of sine-cosine 
form. Remember that the period, T, is the time taken to complete a cycle of a wave 
vibration and that the period is the inverse of the frequency of the vibration. See the 
Table 2.1. 

Table 2.1:  Time domain (original f(x)) and frequency domain (Fourier series) of some continuous 
functions. 

Time domain (original f(x)) Frequency domain (Fourier series) 

 2p  4 A 
f x  ( ) = A  sin =  x a = , b n 0   0 p  T  

 4 − A 1 1  ,n = even 0 ≤ <x T  ,  T  =  2 a n =   p n −1 ν 
  0,  n = odd 

 A  2p   2 A  , n =1 A  sin  x   ,0 ≤ <x T a =  ∴ =b  2 f x  ( )  = 0 n   T  p  0,  n >1   
 0,  T  2 ≤ <x T  

 −2 A 1 
 2 ,n = even 

a n =  p 1 − n 
  0,  n = odd 

Ax a 0 = A 
f x  ( )  =  ,  0 ≤ <x  T  

T a n = 0
Ab n = − 

np 
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4.  Fourier transform 
Whereas the Fourier series is used to represent periodic functions, the Fourier 
transform is used to represent non-periodic functions and a continuous spectrum of 
waves of different frequencies. 

As an example of a set of waves of different frequencies, imagine a classic music 
concert in which the sounds consist of a fundamental and a complement of overtones 
or harmonics of frequencies 2, 3, 4, ... times the frequency of the fundamental, i.e., 
a superposition of sine waves with multiple integer frequencies of the fundamental 
wave. Another example of spectrum of waves of different frequencies is the sunlight 
having a spectrum from infrared to ultraviolet wavelengths. 
The Fourier integrals can be represented as: 

1 ∞ 

g (α ) = ∫ f ( )  x e −iα xdx
2p −∞ 

∞
 

f x  ( )  = ∫ g(α )  eiα x
dα 
−∞ 

Let us represent a nonperiodic function below  

1∴−1 < x < 1
f x  ( )  =  0∴ x >   1

with Fourier transform (Boas 2006). 

1 ∞ 1 1 

g (α  ) = ∫ f ( )  x e −iα x dx = ∫ e −iα xdx
2p −∞ 2p −1 

1 e 
1 −iα x 1 e −iα − e iα sin α g (α ) = = = 

2p −iα 
−

pα −1 2i pα 

2 ∞ sin α cos α xf x  ( )  = dα 
p ∫ 0 α 

5.  Taylor series and MacLaurin series 
The Taylor series is a power series to represent a function as an infinite sum of the 
terms calculated from the function’s derivative at a single point. The Taylor series 
expansion of a function about the point x=a is given by: 

x x2 x 3 xn

f (x + a) = f a  ( ) + f '( a ) + f ''( a) + f '''( a  ) + +...  f ( )n (a ) + Rn (x) 
1! 2! 3! n!  

∑
∞ xn

f x  ( + a) =  f ( )n ( )  a
n=0 n! 

or: 
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2 3x x x
− =  ( ) ( ) ' a ' ' a ... f (x a) f a  − f ' a + f ' ( ) − f ' ( ) + + Rn ( ) x

1! 2! 3! 
∞ n n( 1) x ( )− nf x( a) ∑ f a− = ( ) 
  

n=0 n!
 

The term Rn(x) is the error involved in the approximation, called remainder 
term. As the number of terms in the series increase, the error of remainder term 
decreases. In the infinite of the sum, the Rn(x)=0. 
An alternative formula for the Taylor series is: 

( ) x a  ( ) x a− 2 x a  3− ( ) −
( )  = f a( )  + f ( )  + f ' a + f ' ' a + ...  f x ' a ' ( )  ' ( )

1! 2! 3! 
x a( ) n 

...+
− 

f ( )n ( ) + R xa  ( )
 
n! n
 

x a∞ − nf x  
( ) n 

( )  a( )  = ∑ f ( ) 
  
n=0 n!
 

Then, any function can be represented as: 

f x n x n ( )( )  = T ( )  + R x 
n (x a)i 

T x( )  = − f ( )i ( )  n ∑ a 
0 i!i = 

Where Tn(x) is the nth degree Taylor polynomial of the function ƒ(x). 
The special case where the expansion of a function occurs about the point x=0 is 

called MacLaurin series obeying the condition that all derivatives at x=0 exists. The 
function (1+x)a can be represented in MacLaurin series, where the power rule of the 
derivative of xn, i.e., d(xn)/dy= n xn-1, was used. 

f x( ) (1 x a= + ) 
a−1'( ) = a(1+ x)f x  

a−2''( ) = a a( −1)(1 + x)f x 
a−3f '''( ) = ( −1)( a − 2)(1 x  a a  + x) 

etc . 
When x=0 (condition for MacLaurin series), we have: 

f (0) =1, f '(0) = a, f ''(0) = ( −1), f '''(0) = a a  −1)( a a  ( a − 2) 

Then, the MacLaurin series for (1+x)a is: 

a a −1( ) a a( −1)( a − 2) a 2 3(1 + x) =1 ax x + x + ...+ +  
2! 3! 
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Let us find the Taylor series for y = 1/x2 at x = –1. 

(0) 1
 (1) 2 6 24 

 f ( )  x = 2 , f ( )  x = −  , f (2) 
3 ( )  x = 4 ,  f (3) ( )x = −

x x x x 5

 n 
( )  (−1) ( n + ! f n 1)( )  x = −

x n+2

(0) 1 ,  (1 2 6 x = −1 f ( 1− =)  ) −  2 =1,  f ( 2)  = − = 2,  f (2) ( 1− =)  = 6
(−1  ) ( −1 ) 3 (−1) 4

( 1)n ( n +1)f ( )n − ! ( − =1) −  n+2 = (n +1)! 
(−1)
  

1 ∞ f ( )  n (−1)  ∞ 
n (n +1)!
 ∞ 

n 
n 

x2 = ∑ (x +1) = ∑ (x +1) = ∑ (n +1)( x +1)
n=0 n! n=0 n! n=0
 

By using the same rational we get the Taylor series for y = 1/x at x = 1. 

(0) 1 1 2 6 
 f ( )  x = 1 ,  f (1) ( )  x = −  , f (2) 

2 ( )  x = 3 ,  f (3) ( )x = −
x x x x
 4

( )  n (−1)  n n!
f ( )  x = −
x n+1

, (0) 1 1 x =1 f (1) = 2 =1, f (1) (1)  = − (2) 
3 = −1, f (1) = 2, f (3) (1) = −6 

(1) (1)
 
( )  n (−1)  n n !f  (1) = − = − n


n+1 ( 1) n!  
(1 )

1 ∑
∞ f ( )n (1) ∑

∞ ( −1) n n ∞

=  (x −1) n !
=  ( x −1) n = ∑ ( −1)  n ( x −1)
n

x n=0 n! n=0 n! n=0
 

6.  The differentiation process 
Let us assume the gravity displacement for falling objects. The gravity acceleration 
is g (9.8 ms-2) due to the gravity force on the falling object which falls at velocity v 
which increases with time t along the displacement y. The equations for the velocity 
and displacement of the falling object are given below along with the hypothesis of 
zero initial velocity (as it was dropped from the sky to the ground). 

v = gt + vi , if : vi = 0 → v = gt 

gt 2 gt 2 

y = + vit , if : v i = 0 → y =
 
2 2
 

The average velocity and the instantaneous velocity are given below: 

∆yv = 
∆t
 

∆y f t  ( + ∆t )
−  f t( )v inst = lim ∆ →t 0  = lim 
∆t ∆ →t 0 ∆t 
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The process of taking the limit of the above equation is called differentiation. 
In a more general perspective, let us assume the function where y varies according 

to x variable respecting the function ƒ(x) and we want to obtain the differentiation 
of this function. 

y = ( )f x  

 f x  − ( )dy   ∆y  ( + ∆x) f x   = lim x ∆ →0   = lim ∆ →x 0 dx  ∆x   ∆x  

Let us now assume the function y = 1/x and we want to obtain the differentiation 
of this function. 

1  ∆y  y = ( ) = , x 0 f x  lim ∆ → 
x  ∆x 


1 1 x − (x + ∆ x) −∆x
∆y = ( + ∆x) − ( )  = − = =f x  f x  

x x ( x) x x  x)x + ∆  x x  + ∆  ( + ∆  

−∆x 
∆y ( x −1x x  + ∆  )

= = 
x ( + ∆x)∆x ∆ x x  

 ∆y   −1  1lim x =  2∆ →0  ∆  
lim ∆ →x 0  = − 

  ( + ∆x)  x x  x x  

The differentiation process gives the derivative of a determined function, dy/dx. 
Actually, there are three different ways to obtain the derivative of a given function: the 
forward finite-difference, the backward finite difference and central finite difference. 

 f x  − ( )  dy  ( + ∆x) f xforward : = lim x 0 ∆ →  dx  ∆x  
f x  f x  )dy   ( )  − ( − ∆x backward : = lim x 0 ∆ →  dx  ∆x  

dy  f x  ( ( + ∆  x) − f x  − ∆x) central : = lim ∆ →0 x dx  2∆x  

7. Finite difference approximation 
By knowing that dx is an infinitesimal variation of the x variable, we have the 
following approximation: 

x xlim ∆ →0 ∆ ≈ dx 

Then, the derivative of a given function can be obtained from this approximation 
in three different ways: 
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dy  f (x + dx) − f ( )x ≈  dx  dx  
dy  f ( )  − f ( x x − dx)

≈  dx  dx  
dy  f (x + dx) − f (x − dx) ≈  dx  2dx  

Let us take the expression of the Taylor series below: 
2 3x x x(x a) f a  + f '( ) + f a + f '''( ) + + R ( ) f + =  ( ) a ''( ) a ... x

1! 2! 3! n 

dx dx2 dx3 

( + dx  ) = f x  + f '( ) + f x + f '''( ) + + Rn ( ) f x  ( ) x ''( ) x ... x
1! 2! 3! 

Let us pass f(x) to the left side of the equation and divide by dx: 

f (x + dx) − f ( )  
= f x dx x dx2 

+ + R x( ) x '( ) + f ''( ) + f '''( ) x ... ndx 2! 3! 

Then, a numerical expression for the 

dy  f (x + dx) − f ( )x ≈  dx  dx  

8. Numerical quadrature or integration: Simpson’s rule 
The numerical integration or quadrature is used to calculate the approximate solution 
for the definite integral of the function f(x) between the intervals a and b (b > a). This 
can be done by separating the definite integral into quadratures of the integral of f(x) 
between –h and +h interval in order to obtain a precise numerical integration. 
b a+2h a+4h b 

f ( )  = f ( )  + f x dx ...  x dx ( )  + +  f ( )x dx x dx ∫ ∫ ∫ ∫ 
a a a+2h b−2h 

The Taylor series can be used to provide a nearly exact interpolation of the 
function f(x). 

f ''(x1) 2( )  = ( )  + f x x x ) (x − x )f x  f x  '( )(  − +  +1 1 1 12
 
'''( iv ( )  

− 
a b 
f x1) 3 f (ξx1) 4 +

+ (x x− ) + (x x  ) ∴ =x1 1 16 24 2 
The integration of the Taylor series above gives: 

f ''( )  x1 2  
b f ( )  + f ' x x x  ) (x x  )b x ( )(  − +  − + 1 1 1 1 2( )  =  dxf x dx ∫ ∫ iv'''( ) (( )ξx1) 4  f x  fa a 1 3+ ( − 1) + ( − 1)x x  x x  6 24  
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By knowing that f(x1), f‘(x1), f‘’(x1), f‘’’(x1) and f iv(x1) are constants, then we 
have: 

'( ) x x  f ''(x ) 
− 

b
 f x1 2 1 3 

b f (x1)x + ( − 1) + (x x1) + 2 6f ( )  = x dx ∫ iv'''( f ( )  a  f x1) 4 (xξ1) 5 
+ (x x− 1) + (x x1) − 
 24 120 a 

Where 
b n+1 

n  x 
b 

∫ x dx =   
a n +1a 

Then: 

b f x'( 1) 2 2∫ f x dx  = ( 1)[b − a]+ ( − x1) − ( 1 ( )  f x  b a  − x )  +
 
a 2
 

f ''(x1) 3 3 f '''(x1) 4 4(b x  ) − (a − x ) + b x  ) − (a − x )+  −  ( −  + 1 1   1 1 6 24 
f ( )

+ 
iv(xξ1) 5 5 

( − 1) − (a − x1)  b x
120 

Let: 

a b+ b a− x1 = , h = 
2 2 

Then, the value of x1 is (a + h) or (b – h): 

b a− 
1 = a + = a hx  +

2 
a −b 

−x1 = b + = b h
2 

Hence, we can replace the values of x1 in the equations below: 

x1 − = (a h  aa  + ) − = h 
Hence : (a − x1 ) = −h 

: (b − x1 ) = b (b h) = hand − −  

Let us substitute, (b – a) = 2h, (a – x1) = –h and (b – x1) = h into the last definite 
integral above to obtain: 
b '( )f x1 2 2x dx x (f ( )  = 2hf ( 1) + h − −h)  +∫   
a 2 

f ''(x ) f '''(x )1 3 3 1 4 4h − −  h (  ++ ( )  (  h)  + ( )  − −h)   6 24
 

f iv (( )xξ1) 5 5
( )h ( h) +  − − 120 
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Since (–h)2 = h2 and (–h)4 = h4, then: 
b f ''(x ) f iv ( )1 3 3 (ξx1) 5 5f x dx  +( )  = 2hf (x ) + h + h  h + h ∫ 1     
a 6 120 
b f '' x ) iv (x1)( f ( )ξ3 1 5( )  = 2hf (x1f x dx ) + h + h∫ 
a 3 60 

By knowing that: 

( +δ x ) − f xf x  ( )
'( ) ≈f x  

δ x 

Then: 

'( +δ ) − f xf x  '( ) 
f ''( ) =x ≈ x
 

δ x
 

1  [ + 2 )  − f x  +δ )] ) f xf x  δ (( ( f x  +δ − ( )  
f ''( )  

x x − x ≈ x 

δ δ δx  x x  

Let 

x +δ , x a  , x + δ = b ,x = = 2 h = δ1 x x x 

Then: 

1  ( )  f ) f a[ f b  − (x ] f (x ) − ( )  f ''( ) ≈  
1 − 1 x 

h h h 
 
f b( )  − 2 f (x ) − f ( )  a
 xf ''( ) ≈ 2

1 

h 
Now, replace the f ‘’(x) into the last definite integral above: 

b 3 ivh  f b( )  − 2 f (x1) + f ( )   5 f (( )x1)a ξ
∫ f x dx = 2hf ( 1) +  2( )  x + h3 h  60a  
b h 5 f iv ( )ξ(x1)2hf x  + [ ( )  − 2 1 + f ( )  ]+ hf x dx  ( )  = 1 f b  f x  a( )  ( )∫ 
a 3 60 
b h
( )  ≈ [ f b  + 4 ( ) + f ( )  ]
f x dx  ( )  f x1 a∫ 
a 3 
b b a  a b   −    +f x dx f b ( )  ≈ ( )  + 4 f   + f ( )  a∫  6   2a   

The numerical integration above is known as Simpson’s rule. In more general 
terms, the Simpson´s rule is written as: 
x 

∫ 
2 

( )  ≈ h ( f2 + 4 0 1 )f x dx f + f 
x 3 

0 
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Higher-order quadrature formulas can be derived by retaining more terms of the 
Taylor series used to interpolate the function f(x) between a and b (mesh points). The 
numerical integration from quadratic polynomial used to interpolate yields: 

( ) ≈ 7 f + 32 f +12 f + 32 f + 7 f 
x 

∫ 
4 

f x dx 2h ( 0 1 2 3 4 ) 
x 45 

0 

Which is known as Bode’s rule. 
We depict below the code for the Simpson´s rule for the integration of the 

function f (x) = exp(x) in the interval from 0 to 1. 

!Program name: SIMPSON 
!Integration of a function from Simpson’s rule 
!Integral of the function exp(x) from 0 to 1 interval 
!the exact integration is exp(1)-1=1.1718282 
!h=(b-a)/2 
!x1=a+h 
! S=h/3[f(b)+4f(x1)+f(a)} 
! n: number of interval (even number) 
!S=integral 
Real :: fx, exact, integral, a, b 
Integer :: i, n 
exact=exp(1.)-1 
write (*,*) “Exact integration of exp(x) from 0 to 1= “, exact 
a=0 
b=1 
n=2 
call simpson(a,b,h,fx1,n,integral) 
print *, n, h, fx1, integral 
stop 
end 
subroutine simpson(a,b,h,fx1,n,integral) 
real :: fa, fb, fx1, integral, h, a, b 
integer :: n, i 
fa=exp(a) 
fb=exp(b) 
h=(b-a)/dfloat(n) 
fx1=exp(a+h) 
integral = (fa+fb+4.0*fx1)*h/3.0 
return 
end subroutine simpson 

9. Mean of a function and Monte-Carlo integration 
The mean of a function, <f(x)>, is the average value of the function f(x) over its 
interval (a,b). 
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1 b 

f x  ( )  = ∫ f x( )dx  
b a− a

The mean of a function can also be written as: 

1 f x  ( ) = lim N →∞ ∑
N

 f x( ) 
N i 

i=1 

We can use both equations to obtain the integrand I 
b 

I = ∫ f ( )x dx 
a 

See below: 
b 

I = ∫ f x( )  dx  = b − a f x( )
a 
b b a− N 

I = ∫ f x( )  dx  ≈ ∑ f x  ( i ) 
a N i=1 

b a− N b 

lim N →∞ ∑ f x( i ) = ∫ f x( ) dx  
N i=1 a 

The Monte Carlo method uses suitable random numbers to solve a problem. 
The real power of Monte Carlo is for the evaluation of multi-dimensional integrals, 
but we will consider the simplest case of one-dimensional integral as shown above. 

The Fortran subroutine CALL RANDOM_NUMBER(r) generates random 
numbers in the range (0,1). Then, we have to multiply this random number to scale it 
over the base width of the integral of interest. 

In order to estimate the error of the Monte Carlo integration, we use the formula 
below: 

1  2 N N 
σ = (b a− ) ⋅  1 ∑ 2  

I N  fi − 
1

 N ∑ f i  
N  i=1  i =1   

Let us take the example of the following integral: 
1 1
I = ∫ dx = 0.78540
2 
0 1+ x 
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! Program name: MC-INTEGRATION 
! INTEGRATION BY MONTE CARLO METHOD 
! INTEGRAL BY MEAN FUNCTION 
! EXAMPLE FUNCTION f= 1/(1+x**2) 
! In the interval (0,1) the integral is 0.78540 
Program monte_carlo 
real :: f, f2, integrand, integral, sigma, a, b, x 
integer :: i, n 
data exact/.78540/ 
Print *, “Enter the grid of the integration, n: “ 
Read *, n 
If (n .eq. 0) stop 
Print *, “Enter the lower limit and upper limit of integration, a, b:” 
Read *, a, b 
! For the integral in the example, a=0 and b=1 
f= 0.0 
f2=0.0 
call random_seed() 
do i=1,n

 call random_number(x)
 x=x*b
 f= f+integrand(x)
 f2=f2+(integrand(x)**2) 

! print *, x, f, f2 !OPTIONAL VISUALIZATION 
End do 
f=f/n 
f2=f2/n 
integral=(b-a)*f 
sigma=(b-a)*sqrt((f2-f**2)/n) 
Print *, 
Print *, integral, sigma, “error= “, exact-integral 
End program monte_carlo 
function integrand(x) result(func)

 Implicit none 
Real :: func, x 
func= 1./(1.+x**2) 
End function integrand 

The results of Monte Carlo integration (IMC), sigma and error for each value of 
N is given below. Notice that, except for N = 10, when increasing the value of N, the 
error decreases. 
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for : N =10 
IMC = 0.78922778 σ = 0.05420838 error = −0.0038278102 
for : N = 50 
IMC = 0.75583577 σ = 0.0226997659 error = −0.0295642018 
for : N =100 
IMC = 0.76436228 σ = 0.0162020326 error = −0.0210376978 
for : N = 500 
IMC = 0.77315885 σ = 0.00713236118 error = −0.0122411251 
for : N =1000 
IMC = 0.77808177 σ = 0.00512474775 error = −0.0073181986 
for : N =10000 
IMC = 0.78349620 σ = 0.00161808426 error = −0.0019037723 

Let us now use Monte-Carlo integration algorithm for the double integral. 
The double integral gives us the area of a determined tridimensional surface. For the 
general double integral below, it can be written as the average function multiplied by 
the two limit differences. 

b  d 

∫ ∫ f  ( ,  x y)  dy dx = (b − a)(  d − c)
 f ( ,  x y )
a  c 
 
b  d  1
∫ ∫

N


 f (x, y)
 dy dx ≈ (b − a)(d − c) ∑ f
N i (xi , yi )

a  c  i=1
 

The formula for sigma is: 

1  N  N 
2 

σ ( 2
I = d − c b  )( − a ) ⋅  1 

N ∑ fi − 
1 

N N ∑ fi  
 i=1  i=1   

Let us consider the following double integral; 

5  5  
∫ ∫

4 4 

 (4 − x 2 − y 2 )dy  dx = 4.62239 
0  0  

The code is very similar to the previous one: 
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! Program name: MC-INTEGRATION2 
! INTEGRATION BY MONTE CARLO METHOD 
! INTEGRAL BY MEAN FUNCTION 
! EXAMPLE FUNCTION f(x,y)=4-x^2-y^2 
! In the interval (0,5/4) and (0,5/4) the integral is 4.62239 
Program monte_carlo 
real :: f, f2, integrand, integral, sigma, a, b, x, c, d, y 
integer :: i, n 
data exact/4.62239/ 
Print *, “Enter the grid of the integration, n: “ 
Read *, n 
If (n .eq. 0) stop 
Print *, “Enter the lower limit and upper limit of first integration, a, b:” 
Read *, a, b ! In the suggested problem a=2 and b=5/4 
Print *, “Enter the lower limit and upper limit of second integration, c, d:” 
Read *, c, d ! In the suggested problem a=0 and d=5/4 
f= 0.0 
f2=0.0 
call random_seed() 
do i=1,n

 call random_number(x)
 x=x*b
 call random_number(y)
 y=y*d
 f= f+integrand(x,y)
 f2=f2+(integrand(x,y)**2) 
! print *, x, f, f2 

End do
 

f=f/n
 
f2=f2/n
 
integral=(b-a)*(d-c)*f
 
sigma=(b-a)*(d-c)*sqrt((f2-f**2)/n)
 
Print *,
 
Print *, integral, sigma, “error= “, exact-integral
 
End program monte_carlo
 

function integrand(x,y) result(func)

 Implicit none 

Real :: func, x, y 
func= 4-x**2-y**2 
End function integrand 
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The results are: 
for : N =100 
IMC = 4.4867902 σ = 0.11153496 error = −0.13559961 
for : N =1000 
IMC = 4.5845666 σ = 0.033094299 error = −0.0378232002 
for : N =10000 
IMC = 4.6197872 σ = 0.0010365607 error = −0.0026025772 

10.  Integration by midpoint rule 
Let us assume a function f(x) over the interval (x0, x1) where x1 = x0 + h. The  
midpoint rule is the area of the length h times the height f(x0 + h/2): 

MP = h× f (x0 + 
h 
2 )

x

∫
1 

f ( )  x dx ≈ ×h f  (x0 +
h 
2 )

x0 

Now consider that the interval (a,b) which is divided into m equal m intervals of 
the same width h (b – a/m) by using equally spaced node nk, where k = 1,2,3,..., m. 
The composite midpoint rule is: 

b a−h = 
m 

MP = h∑
m

 f (a + (k − 1
2 )h) ∴ =k 1,  2,3..., m 

k =1
 

b
 

∫
m

f ( )  x dx ≈h∑ f ( a + (k − 1
2 )h)

a k =1 

Let us find the following definite integral with the midpoint rule: 
10 

∫ (2 + cos ( 2 x ) )dx 

am name: MIDP

0 

!Progr OINT 
!Integration of function: 2+cos(2*sqrt(x)) 
!Interval: 0 to 10 
! I=20.13035 
integer :: k, a, m 
real :: h, i, x, n, b 
a=0 
b=10. 
m=20 
i=0. 
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h=(b-a)/m 
print *, h 
do k=1,m

 n=a+(k-0.5)*h
 x=n
 i=i+h*func(x)
 print *, k, n, func(x), i 

end do 
print *, i 
stop 
end 
function func(x) result(f) 
real :: f 
f=2+cos(2*sqrt(x)) 
end function func 

See the stability of the midpoint rule for the Runge function below. We get the 
exact value of the integrand of this function. 

!Program name: MIDPOINT_STABILITY 
!Integration of function: 1/1+25x^2 
!Interval: -3 to 3 
! I=0.60169208 
integer :: k, a, m 
real :: h, i, x, n, b 
a=-3 
b=3. 
m=20 
i=0. 
h=(b-a)/m 
print *, h 
do k=1,m

 n=a+(k-0.5)*h
 x=n
 i=i+h*func(x)
 print *, k, n, func(x), i 

end do 
print *, i 
stop 
end 
function func(x) result(f) 
real :: f 
f=1/(1+25*x**2) 
end function func 
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11.  Numerical differentiation 
The numerical differentiation is the mathematical procedure to estimate the derivative 
of a determined function. 

f x( + h) − f x( )f x  '( ) = limh→0 h 

Which can be numerically approximated to 

f x( + h) − f x( )  f '( x  ) ≈ + O h  ( 2 )
h
 

f x  ( + h  ) − f x( − h)f '( x  ) ≈ + O h  ( 2
)
2h 

Where h is a small positive or negative change. As h grows smaller, the numerical 
integration becomes more precise (see more details in Chapter One). 

Next, it is depicted the code for the derivative of the function f(x) = xn. Note that 
the value of h is given by formula: h = sqrt(eps)*x, where eps is the precision of the 
calculation (5.421E-20). 

h = x eps 

!Program name: SLOPE 
!derivative (slope) of a function f(x) = x**n 
real *16 xph, x, slope, dx, h 
integer :: n 
Print *, ‘Derivative (slope) of the function x^n’ 
Print *, ‘Give the value of x: ‘ 
Read *, x 
Print *, ‘Give the value of n: ‘ 
Read *, n 
call epsilon(eps) 
print *, ‘eps: ‘, eps 
Print *, ‘sqrt(eps): ‘, sqrt(eps) 
h=sqrt(eps)*x 
Print *, ‘h: ‘, h 
xph=x+h 
dx=xph-x 
Print *, ‘xph: ‘, xph 
slope=(xph**n-x**n)/dx 
Print *, ‘slope=(xph**n-x**n)/dx’ 
write (*,*) ‘slope: ‘, slope 
stop 
end 
subroutine epsilon(eps) 
real :: eps 



 Basics of Numerical Calculation and Series 69 

!Epsilon - calculation of the precision
 eps=1.
 do

 eps=eps/2
 If (eps+1 .eq. 1.) exit

 End do
 return
 End subroutine epsilon 

12.  Finding roots of a function: bisection method 
There are three basic methods to find the roots of a function: bisection, secant and 
Newton-Raphson. The process of finding the roots of a given function f(x) means to 
find the values of x where f(x) = 0. 

In the bisection method, the function is bisected (or divided into small sections) 
and one uses the recursive process to find the root(s) by increasing step-by-step the 
value of x, according to a given interval dx, from an initial trial value of x. The 
recursive process ends when the tolerance (i.e., a given value approaching zero) is 
reached for a given x in the function. 

Let us use the function f(x) = x3 – 9, where the root is 2.080084 with single 
precision. In the code below the trial value for x is 1.0, the tolerance is 10–6  and the 
initial step size is 0.5. In this first code, the number of bisections is indefinite. 

!Program name: BISECTION1 
!Function: x^3-9 
!Initial x value is 1.0 
!Tolerance 1E-06 
!initial Interval dx=0.5 
!The number of bisections is indefinite 
!Root is 2.08008382 
Real :: x, dx, tolx
 
integer :: iter
 
y(x)=x**3-9
 
fold=y(x) ! fold=-9.
 
tolx=1.E-06
 
x=1.
 
dx=0.5
 
iter=0
 
write (*,5) “iter”, “x”, “y(x)”, “fold”, “y(x)*fold”, “dx”
 
5 format (a5X,a10X,a20X,a20X,a15X,a15X)
 
10 continue
 
iter=iter+1

 x=x+dx
 print *,iter, x, y(x), fold, y(x)*fold, dx 



 

 Table 2.2: Iteration process of the BISECTION1 code. 

iter x y(x) fold fold*y(x) dx 

0 1.50000 –5.6250000 –9.0 50.625000 0.50000000

 1 2.00000 –1.0000000 –9.0 9.0000000 0.50000000

 2 2.50000 6.6250000 –9.0 –59.625000 0.50000000

 3 2.25000 2.3906250 –9. 0 –21.515625 0.25000000

 4 2.12500 0.59570313 –9.0 –5.3613281 0.12500000

 5 2.06250 –0.22631836 –9.0 2.0368652 6.25000000E-02

 6 2.12500 0.59570313 –9.0 –5.3613281 6.25000000E-02

 7 2.09375 0.17855835 –9.0 –1.6070251 3.12500000E-02

 8 2.07812 –2.54020E-02 –9.0 0.22861862 1.56250000E-02 

9 2.09375 0.17855835 –9.0 –1.6070251 1.56250000E-02 

10 2.085937 7.6196193E-02 –9.0 –0.68576574 7.81250000E-03 

11 2.0820313 2.5301754E-02 –9.0 –0.22771579 3.90625000E-03 

12 2.0800781 –7.396191E-05 –9.0 6.65657E-04 1.95312500E-03 

13 2.0820313 2.5301754E-02 –9.0 –0.22771579 1.95312500E-03 

14 2.0810547 1.260794E-02 –9.0 –0.11347148 9.76562500E-04 

15 2.0805664 6.2655019E-03 –9.0 –5.638951E-02 4.88281250E-04 

16 2.0803223 3.0953981E-03 –9.0 –2.785858E-02 2.44140625E-04 

17 2.0802002 1.5106251E-03 –9.0 –1.359562E-02 1.22070313E-04 

18 2.0801392 7.1830832E-04 –9.0 –6.464774E-03 6.10351563E-05 

19 2.0801086 3.2216741E-04 –9.0 –2.899506E-03 3.05175781E-05 

20 2.0800934 1.2410129E-04 –9.0 –1.116911E-03 1.52587891E-05 

21 2.0800858 2.5069326E-05 –9.0 –2.256239E-04 7.62939453E-06 

22 2.0800819 –2.444638E-05 –9.0 2.2001746E-04 3.81469727E-06 

23 2.0800858 2.5069326E-05 –9.0 –2.256239E-04 3.81469727E-06 

24 2.0800838 3.1144796E-07 –9.0 –2.803031E-06 1.90734863E-06 
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 if ((fold*y(x)) .lt. 0.) then
 x=x-dx
 dx=dx/2

 end if
 if (abs(dx) .gt.tolx) goto 10 

stop
 end 

The result of the code BISECTION1 is shown Table 2.1. One can see that when 
fold*y(x) < 0 the value of dx decreases by half. The recursive procedure stops when 
dx = tolx. 
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Next, we present a different code for the same calculation where the number of 
bisections is initially established (iter=100). In this case, the last iteration is 24. 

!Program name: BISECTION2 
!Function: x^3-9 
!Initial x value is 1.0 
!Tolerance 1E-06 
!initial Interval dx=0.5 
!The number of bisections is 100 
!Root is 2.08008382 
Real :: x, dx, y, fold 
Real :: tolx 
integer :: iter, i 
func(x)=x**3-9 
fold=func(x) 
tolx=1.E-06 
x=1. 
dx=0.5 
iter=100 
write (*,5) “iter”, “x”, “y(x)”, “fold”, “fold*y(x)”, “dx” 
5 format (a5X,a10X,a20X,a20X,a15X, a15X) 
do i=0,iter

 x=x+dx 
y=func(x)

 print *,i, x, y, fold, fold*y, dx

 if ((fold*y) .lt. 0.) then

 x=x-dx


 dx=dx/2
 end if

 if (abs(dx) .gt.tolx) cycle

 if (abs(dx) .lt. tolx) exit
 

end do
 stop
 end 

The next bisection algorithm took lesser steps (19 steps) to converge to the 
tolerance value. In this code, there is no dx interval. 
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!Program name: BISECTION3 
!Function: x^3-9 
!Initial x value is 1.0 
!Tolerance 1E-06 
!initial Interval dx=0.5 
!The number of bisections is 100 
!Root is 2.08008382 
module finding_roots 
implicit none 
Real :: xl, xr 
contains

 subroutine init() 
!Root between x=0 and x=3

 xl=0. 
xr=3.

 write (*,5) “iter”, “x”, “y(x)”, “fl”, “fl*y(x)” 
5 format (a5X,a10X,a20X,a20X,a15X) 
end subroutine init

 function func(x) result(y)
 implicit none 

Real :: x 
Real :: y !dummy argument

 y=x**3-9

 end function func


 subroutine bisect(xl,xr,x,func,f)

 implicit none 

integer :: i 
real :: xl, xr, x, func, toly 
real :: fl, fr, f !dummy arguments

 call init() 
fl=func(xl) 
fr=func(xr)

 toly=1.E-06
 do i=1,100

 x=0.5*(xl+xr)
 f=func(x) 

if (f*fl .lt. 0) then 
xr=x 
fr=f

 else
 xl=x 

fl=f 



 Table 2.3: Iteration process of the BISECTION3 code.
 

ite x y(x) fl fl*y(x) 

1 1.5000000 –5.6250000 –5.6250000 31.640625

 2 2.2500000 2.3906250 –5.6250000 –13.447266

 3 1.8750000 –2.4082031 –2.4082031 5.7994423

 4 2.0625000 –0.22631836 –0.22631836 5.12199998E-02

 5 2.1562500 1.0252991 –0.22631836 –0.23204401

 6 2.1093750 0.38558578 –0.22631836 –8.72651413E-02

 7 2.0859375 7.6196193E-02 –0.22631836 –1.72445979E-02

 8 2.0742188 –7.5915634E-02 –7.5915634E-02 5.76318381E-03

 9 2.0800781 –7.3961913E-05 –7.3961913E-05 5.47036461E-09 

10 2.0830078 3.8007479E-02 –7.3961913E-05 –2.81110579E-06 

11 2.0815430 1.8953358E-02 –7.3961913E-05 –1.40182669E-06 

12 2.0808105 9.4363503E-03 –7.3961913E-05 –6.97930545E-07 

13 2.0804443 4.6803569E-03 –7.3961913E-05 –3.46168150E-07 

14 2.0802612 2.3029884E-03 –7.3961913E-05 –1.70333436E-07 

15 2.0801697 1.1144608E-03 –7.3961913E-05 –8.24276611E-08 

16 2.0801239 5.2023644E-04 –7.3961913E-05 –3.84776833E-08 

17 2.0801010 2.2313398E-04 –7.3961913E-05 –1.65034173E-08 

18 2.0800896 7.4585215E-05 –7.3961913E-05 –5.51646506E-09 

19 2.0800838 3.1144796E-07 –7.3961913E-05 –2.30352872E-11 

2.0800838                   3.11447963E-07 
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 end if 
Write (*,*) i, x, f, fl, f*fl
 if (abs(f) .lt. toly) exit

 end do
 end subroutine bisect 

end module finding_roots 
use finding_roots 
call bisect(xl,xr,x,func,f)
 
print *, x, func(x)
 
stop
 
end
 

The result of this last code is shown in Table 2.3.
 

13. Finding roots of a function: Newton-Raphson method 
The Newton-Raphson method is based on the tangent line equation. 

Suppose a function f(x) in which we intend to find the tangent line at the point 
p (xn, f(xn)). Let us consider a nearby point q (xn + h, f(xn + h)) on that curve. The 
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segment uniting these points is the secant line. The slope of this secant line (the ratio 
y/x) is: 

( n + −  h) f xnf x  ( ) 
  

h
 
As the value of h becomes smaller and smaller, the point q approaches p and the 

secant line tends to become the tangent line when h is infinitesimally small, the slope 
assumes a certain value k. The coordinates of the tangent line (xt,yt) can be found as: 

y − ( )t f xn = k = '( )f x 

(xt − xn ) 

n
 

then : 
y = f x  + f ' x (x − x )( )  ( )t n n t n 

Let us now choose the coordinates of the tangent line (xt,yt) as the root of the 
function f(x) , that is, at xn+1 and yt = 0. 

: y = 0∴ = xfor xt t n+1 

( )  + f ( ) (x − x )0 = f x  ' xn n n+1 n 

The value of xn+1 is the guess for the root of the function: 

( )f xnx x= − n+1 n '( n )f x  
The Newton-Raphson method has a faster convergence than bisection method, 

but not always converge if the initial point x0 is not within the neighborhood of the 
root or if the in any iteration point it finds a stationary point or it finds a k-cycle. 
The Newton-Raphson method is only possible when the derivative of the function 
is known. 

14. Finding roots of a function: secant method 
The secant method derives from Newton-Raphson method. It has an intermediate 
efficiency between bisection and Newton-Raphson method. On the other hand, there 
is no need to find the derivative of function in the secant method. 

In the secant method the derivative of the function is substituted by the backward 
finite difference equation: 

( )  − f x(f x  )n n−1f x'( ) =
 n x − x
n n−1 

Then, the iterative equation becomes: 

( )f x  
x = x − n 

n+1 n '( n )f x  
x − xn n−1x = x − ( )f xn+1 n n ( )  − f x(f x  )n n−1 
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Let: 
n 1 n , n n= −  1, n 1 n 2+ =  − = − 
  

x − x
n−1 n−2x − ( )x = f xn n−1 n−1 ( ) − f x  )f x  (n−1 n−2 

And then: 

x ( f x  ) − f x  )) − f x  )x + f x  )( ( ( ( xn−1 n−1 n−2 n−1 n−1 n−1 n−2x = n ( ) − f x  )f x  (n−1 n−2 

( )x − f x  )x − f x  )x + f x  )f x  ( ( ( xn−1 n−1 n−2 n−1 n−1 n−1 n−1 n−2=xn ( ) − f x  )f x  (n−1 n−2 

( )x − f x  )xf x  (n−1 n−2 n−2 n−1xn = 
f x  f x( ) − ( )n−1 n−2 

The last equation is the secant equation. Unlike Newton-Raphson, two initial 
guesses (instead of just one) are needed in the secant method. They are xn–1 and xn+1 
or xn-2 and xn-1. Provided they are close to the root of the equation (upper and lower 
value than xn), the convergence is as fast as the Newton-Raphson method. 

During the iteration process of the secant method, we have to obtain the 
intermediate value between xn–1 and xn+1. It is: 

( )x − f x  )x  f x  )x − f x  )f x  ( ( ( xn−1 n−2 n−2 n−1 n+1 n−1 n−1 n+1≡
( ) − f x  ) f x  ) − f x  )f x  ( ( (n−1 n−2 n+1 n−1 

( ) − x  f x  )x  f x  (n−1 n+1 n+1 n−1xn = 
( ) − f x  )f x  (n+1 n−1 

For the equation x3 + x – 3, the secant method finds the root after eight iterations. 
For the equation x3 – 9, the secant method finds the root in six iterations (for x1 = 0.5 
and x2 = 3.0), that is three times more efficient than the bisection method. 

!Program name: SECANT 
!Function: x^3+x-3 
!Initial x values are 0 and 3.0 
!Tolerance 1E-06 
!Root=1.2134118 
Real :: x0, x1, x2, xn, c
 
Real :: tolx
 
integer :: i
 
f(x)=x**3+x-3
 

tolx=1.E-06
 
x1=0.
 
x2=3.
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write (*,5) “iter”, “x1”, “x2”,”y1”,”y2”,”c”,”xn-x0”
 
5 format (a5X,a10X,a20X,a20X,a15X, a15X,a15X,a15x)
 
do i=0,100
 
x0=(x1*f(x2)-x2*f(x1))/(f(x2)-f(x1))
 
c=f(x1)*f(x0)


 x1=x2
 x2=x0 

xn=(x1*f(x2)-x2*f(x1))/(f(x2)-f(x1))
 print *,i, x1, x2, f(x1), f(x2), c, xn-x0


 if (c == 0.) exit

 if (abs(xn-x0) .gt.tolx) cycle

 if (abs(xn-x0) .lt. tolx) exit
 

end do
 Print *, “The root of the equation is: “, x0 

stop 
end 

15. Numerov method 
The Numerov method is used to calculate numerically the ordinary second 
order differential equation such as the one-particle quantum harmonic oscillator 
(Chapter 14) and radial wave function of the hydrogen atom (Chapter 17): 



2 d 2y
− + ( )  ( )  = E ( )V x  y x y x

2m dx2 

d 2y 2m 
= (  ( )  − E)  ( )  V x  y x 

dx2 


2
 

2 2m
K ( )  = 2 (E −V xx  ( ))  
 

d 2y 2 
2 ( )  ( )  x = 0+ K x  y

dx 

Any smooth function can be rewritten as a sum of infinite polynomial terms. 
Then, let us use the general Taylor series (see previous section): 

2 3x x x(x a) f a  + f ' a + f ' ( )  + f ' ( )  + + R ( )  f + =  ( ) ( )  ' a ' ' a ...  x
1! 2! 3! n 

to represent the wave function y(x): 
2 3 4h h h iv(x h) y x + h '( ) + y x + y '''( ) + y x + ... y + =  ( ) y x ''( ) x ( ) 

2! 3! 4! 
Where h is a small increment. Observe that h and x were interchanged in their 

positions in the equation. 
The Taylor series can also be written in the following way (see previous section): 

2 3 4h h h iv(x h) y x − h ' x + y ' ( )  − y ' ( )  + y x + ...  y − =  ( )  y ( )  ' x ' ' x ( )
2! 3! 4! 
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By summing both Taylor series equations for the wave function, we have: 
2 3 4h h h iv(x h) y x + h ' x + y ' ( )  + y ' ( )( )  y ( )  ' x ' ' x + y ( )  +y + =  x

2! 3! 4! 
h5 

v 6+ y ( )  +O h(x )
5! 
 2 3h h h4 

iv  
y (x h− =  ) y x − h '( ) + y x − y '''( ) ( )  ( ) y x ''( ) x + y x 2! 3! 4!+  
 h5 

v 6  
− y ( )  +O h( x )
 5!  

In both series above, they were truncated to the fifth term, then O(h6) represents 
the error of the series approximation, or the remainder term (see previous section). 
The result of this sum yields only even terms: 

4 
2 h iv 6(x h) y (x − h) = y ( )  + h y ' x + y ( )  +O h  )y + +  2 x ' ( )  x (

12 
Let us make the term y‘’(x) explicit: 

4h iv 6 2y (x h) y (x h) y ( )  − y x − ( ) = h y ' ( )+ +  − − 2 x ( )  O h  ' x
12 

4h iv 6(x h) y (x h) y ( )  − y x − (y + +  − − 2 x ( )  O h  )
12y ''( ) x = 2h
 

(x h) y (x h) y ( )  h2
y + +  − − 2 x y ''( ) = − y iv ( ) −O h4 )x x (

h2 12
 

Then, we found the expression from Taylor series for the second derivative of 
the wave function. 
Let us rearrange the above equation and omit the error of the series O(h4): 

(x h) y (x h) y ( )  2y + +  − − 2 x h iv 

h2 x 
12 

x=y ''( ) + y ( ) 

− − 2 x  h2 d 2y (x + +  h) y (x h) y ( )   
2 1 2 y ''( ) = + x 

h 12 dx  

Then, we use the following operator: 
2 2h d1+

12 dx2 

On the equation: 

y '' x + 2 ( )  ( )  y x( )  K x  = 0 

And we have the following result: 
2 2 2 2 h d   2 h d  2

1+ 2 y ' ( )  = −K x  y x − 2  ( )  ( )   ' x ( )  ( )  K x  y x
12 dx 12 dx  
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2 2 2
h iv h d  2 2
'' x + y ( )  = − K x  y x  − ( )  ( )  y ( )  x  ( )  ( )  K x  y x2  12 12 dx 

Let us replace the above equation on the previous expression for the second 
derivative of the wave function: 

(x h) y (x h) y ( )  h2 
iv 4y + +  − − 2 x''( ) = 2 − y x −O h(y x ( ) )

h 12
 
2 

iv (x h) y (x h) y ( )  4
h y + +  − − 2 x''( ) + y ( ) = 2 −O hy x x ( )
12 h 

Then, we have: 

2 2
h d  2  2
− 2 K x( )  ( )  y x − K x  y x( )  ( )  =12 dx
 
+ +  ) y (x h− − 2 ( )  4
y (x h ) y x 

= 2 − ( )O h  
h 

Multiply the above equation by h2: 
4 2
h d  2 2 2
K x  y  h K x  y =−  ( )  ( )  x − ( )  ( )  x2  12 dx
 

+ +  − − 2 x ( 6
=y (x h) y (x h) y ( )  −O h  ) 
4 2h d  2(x h) y (x h− −) y ( )  + K x y xy + +  2 x  ( )  ( )  2  12 dx 

2 2+h K  ( )  ( )  x y x = 0 

Let us now find the expression for the first term of the left side of the above 
equation by using the relation we have found for the second derivative of the wave 
function, but we omit the last two terms 

(x h) y (x h) y ( )  h2 
iv 4y + +  − − 2 x''( ) = 2 − y x −O h(y x ( ) )

h 12
 
y (x h) y (x h) y ( ) 
+ +  − − 2 x''( ) ≈ 2y x 

h 
Then, we have: 

d 2 2
 ( )  ( )  x  ≈
K x  y2  dx 
2 2 2( + h) (x h) ( − h y x h)  2  ( ) ( )  K x  y + +  K x  ) (  − − K x  y x

≈ 2h 

By replacing the above equation in 
4 2h d  2(x h) y (x h− −) y ( )  + K x y xy + +  2 x  ( )  ( )  2  12 dx 

2 2+h K  ( )  ( )  y x = 0x 
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We have: 
4 2 2	 2K x( + h) (x h) ( − h y x h)  2  ( ) ( )  h	  y + +  K x  ) (  − − K x  y x 
 
 2  +


12	 h	  
+ +  − − 2 x 2 2 ( )  ( )  +y (x h) y (x h) y ( )  + h K  x  y x = 0 

By rearranging the last equation, we obtain the Numerov equation for the wave 
function: 

5	 2 2 1 2 2	 2 1  − h K  ( )  y x 1 h K  (x − h) y (x − h)x  ( )  − +   12   12 (x h)	 2 2y + =  
1+ 12

1 h K  (x + h) 

For convenience, let us introduce the array fn defined as: 

h2
2
fn =1+ K x( ) 


12 
h2
 

2 x h)
f =1+ K ( +n+1 12 
h2

2
fn−1 =1+ K (x h)
−
12
 

(x h) y , y ( − = 
  y + =  x h) yn+1 n−1 

Then, the Numerov formula is written as: 

(12 −10 fn )y n − fn−1y n−1=y n+1 fn+1 

The above equation can be applied to any ordinary second order differential. As 
we omitted the O(h4), the numerical error is O(h4). 
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Linear Algebra for 
Quantum Mechanics 3 
1. Matrix and matrix multiplication 
A matrix is used to arrange real or complex scalars (or functions) in a rectangular 
array of m,n dimensions where, m is the dimension of the row (m-rows) and n is the 
dimension of the column (n-column). The matrix is designated as m x n matrix or 
matrix of orders m,n. The order is always: number of rows x number of columns. The 
elements of the matrix are designated by i and j indexes. 

a a  a 11 12 1n
 a a  a21 22 2n A = 

  	   

  a a  a n1 2n	 nn  

A very important property to the quantum matrix mechanics is that the 
commutative property is not applied to matrices (see section 39 – commutators). In 
chapter nine we see that the linear momentum and position matrices do not commute 
and this brings important consequences to the quantum angular momentum, 
uncertainty principle among other consequences. 

When both matrices are not square matrices (whose rows and columns have the 
same number), probably the inverted order of the product provides no matrix at all. 
Even when both matrices are square matrices, the matrix AB is mostly different from 
matrix BA. 

The matrix product AB (in this order) is defined only if: the number of columns 
of A is equal to the number of rows of B. The dimensions of this matrix product is 
the number of rows of A and the number of columns of B. Likewise, the product BA 
is defined only if: the number of columns of B is equal to the number of rows of A. 

A ⋅B = Cn m  m× p n×× p 

However : Bm× p ⋅ An m× = impossible 
A ⋅B ≠ B ⋅ An n× n n  × n n× n n  × 

n 

A B  c = a b  C =  ⋅ ∴  ij	 ∑ ik kj 
k =1 
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Let us see the example below: 

1 4 7 7 4 1 102 66 30
 
     
F = 2 5 8 , G = 8 5 2 , FG = 126 81 36     
 
3 6 9 9 6 3 150 96 42
      
In Section 19, it is depicted the Fortran implementation for the matrix 

multiplication. Try out the matrices F and G above. 

2. Trace of a matrix 
The trace of a square matrix (matrix of order n), An, is the sum of its matrix elements 
on the main diagonal of A, ak,k. 

n 

Tr A = a11 22 + + ann ∑+ a ... = aii
 
i=1
 

3. Transpose of a matrix 
The transpose of the matrix Anxm, AT, is a new matrix where its rows are the columns 
of the original matrix and vice versa. In the case where the transpose of the matrix 
is similar to the original matrix, the former is called symmetric matrix. The diagonal 
elements, ak,k, of both matrices are the same 

a a  a  a a  a 11 12 1n 11 21 n1
    
a21 a22  a2n  T a12 a22  an2  TA = , A = a = a( ) ( )ij ji           
 
   
 
an1 an2  ann  a1n a2n  ann 
 

4. Symmetric matrix and orthogonal matrix 
A symmetric matrix, A, is a square matrix which respects the relation below: 

= TA A  
T 2A A  = A 

A square matrix A is said to be orthogonal when: 
T TAA = A A = I 

Where I is the unit (or identity) matrix of the same order whose diagonal 
elements are unitary values and non-diagonal elements are zero. 

5. The determinant of a matrix 
The concept of the determinant came from the resolution of the system of linear 
equations. The determinant of order n derives from a square array of n2 elements and 
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results in a scalar number. The determinant is named as DA or det(A), where A is 
related to the square array of n2 elements. 

a11 a 12  a1n 

a a 
DA = 21 22  a2n

    

an1 a n2  ann 

There are two methods to obtain the scalar value of a determinant: the one given 
in the next Section 6 (the diagonal product of an upper triangular matrix) and the 
Laplace expansion (Section 7). The triangular matrix has 0 elements below the main 
diagonal of the matrix. It is possible to transform any matrix into an upper triangular 
matrix by the Gaussian elimination method. 

6.  Gaussian elimination method and the determinant of a matrix 
The Gaussian elimination method is used to transform any matrix into upper 
triangular matrix (row echelon form). This method is based on three row operations: 

 (i)  swapping two rows: (Ei)↔(Ej); 
(ii)   multiplying a row by a nonzero number: (λEi)→(Ei); 
(iii)   adding a multiple of one row to another row: (Ei+λEj)→(Ei). 

These operations do not change the determinant of the matrix (and also the 
system of linear equations). The diagonal product of an upper triangular matrix gives 
the determinant of this matrix, where a zero element is not permitted. 
In the example below: 

(1)→(2): –3E1+E4 
(2)→(3): –2E2+E3 // 6E2+E4 
(3)→(4): –1/3E3+E4 

1 2 0 0  1  2  0 0  
0 1 0 2 0 1 0 2 

det( A) = =
 = 40
0 2 3 0  0 2 3 0  
3 0 1 0  0 −6 1 0  

(1) (2)
 
1  2 0  0  1  2 0  0  
0 1  0 2 0 1  0  2 

det( A ) = = = 40
0 0  3  −4 0 0  3  −4  

0 0 1 12 0 0 0 40 / 3 
(3) (4) 



1 2 2 2 2 1
det( ) 1 2 3

1 1 3 1 3 1
det( ) 1 ( 1 2) 2 (2 6) 3 (2 3) 6

− −
= × − × + ×

− − − −

= × − + − × − + × − =

A

A

1 2 3
2 1 2

3 1 1

 
 = − 
 − − 

A
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7. Laplace expansion and determinant of a matrix 
The Laplace expansion is a method to obtain the determinant of a matrix based on 
cofactors minor matrix. The cofactors, Cij, of the square matrix A are (–1)i+j times 
the determinant of the submatrix Aij, D(Aij), obtained from A by deleting ith rows 
and jth columns of A. The D(Aij) is called minor Mij of element aij of a determinant D 
obtained by deleting row i and column j. The cofactors of A form a new matrix called 
cofactor matrix, C, whose elements are: 

+Cij = ( 1) i j  ⋅ D( ij− A ) 
+Cij = ( 1) − i j  ⋅ Mij 

The determinant, D, of a square matrix of order n can be obtained by the 
expansion along any row i or by the expansion of any column j according to Laplace 
expansion. 

n 

D = a C  + a C ...+ + a C  = a Ci1 i1 i 2 i2 in in	 ∑ ij ij
 
j =1
 

n 

+ + a C  = a CD  = a1 jC1 j + a2 jC2 j ... nj nj	 ∑ ij ij 
i=1 

Let us find the determinant of the matrix A below: 

 1 2 3  
 A = −2 1  2  
 3 − −  1 1  

1 2 −2 2 −2 1
det( A) = 1× 2− ×  3+ ×

1 1− −  3 −1 3 −1 
det( ) = 1× − 2) 2 (2 6) 3 (2 3) A ( 1 +  − × − + × −  =  6 

8. Adjugate/adjunct/adjoint matrix 
The adjugate or adjunct matrix is the transpose of the cofactor matrix, C, of the 
square matrix A. Sometimes, one can find also the term adjoint of A, Â, to refer to 
the adjunct matrix 

adj(A) = CT 

9. Inverse matrix 
If A and B are square matrices of the same order, B is the inverse matrix of A, A–1, if: 

A . B = B . A = I 

Where I is the unit (or identity) matrix of the same order whose diagonal 
elements are unitary values and non-diagonal elements are zero. The inverse matrix 
can be obtained by: 

adj( )AA−1 = 
det A 

Where det A is the determinant of matrix A. 
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10. Gauss-Jordan elimination and inverse matrix 
The Gauss-Jordan method (or elimination) is a method to solve a system of linear 
equations based on the property of the inverse matrix of order n: 

A A⋅ −1 = I 
A−1 = (x x  x  x )∴ = column vectorx1 2 k n 

I = (e e  e  e )∴e = column vector1 2 k n 

Then: Axk = ek ∴(k = 1,2,..., n) 

Where the set of all equations Axk=ek represents a system of linear equations 
(see Section 22) which can be solved by the Gauss-Jordan elimination method 
which uses the same arithmetic rules of the Gaussian elimination method in order to 
transform the augmented matrix (A|I) into (I|A–1). 

 1 2 3 
 
 
A = −2 1  2 
 
 3 1
− −1 
 

 1  2  3 1 0 0
 

) 
 

(A I  = −2  1  2 0 1 0  ∴
 
 3 − −  1  1 0 0 1
  

 
−1 (I A  ) =  

 

1 0 0 
  

0 1 0
 

0 0 1
 

1 1 1− 6 6 6 2 5 4− −3 3 3  
1 7 5 − 6 6 6  

11. Properties of orthogonal matrix 
An orthogonal matrix is a type of square matrix where its inverse is equal to its 
transpose. If A is an orthogonal matrix, then: 

T −1A = A 
A A⋅ T = I 
det A = ±1 

T T 2det( ⋅ ) = det A × det A = (det A) = 1A A  

If a 3 x 3 matrix, A, is orthogonal, then it represents three orthogonal vectors, a, 
b, and c whose coefficients in x, y and z directions (ai, bi, ci, where i = 1,2,3) are the 
matrix elements in each row. As a consequence, the scalar products of the vectors a, 
b, and c are: 
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a1 a 2 a 3 
 A = b b 2 b 1 3 
 
c c c  
1 2 3  

a = a1x  + a y  + a z  2 2
2 3 , a a  ⋅ =  a1 + a2 + a 23  = 1

b = b1x  + b2 y  + b3 z  , b b  ⋅ = b 2 + b2 + b 21 2 3  = 1

c = c1x  + c2 y  + c3 z  , c c  ⋅ =  c2 + c2 + c 21 2 3  = 1
a ⋅b  = 0 ∴b ⋅c  = 0,   c a  ⋅ = 0  

The inverse of an orthogonal matrix is equal to its transpose. Let O be an 
orthogonal matrix: 

O–1 = OT 

12.  Antisymmetry in matrices and permutation matrix 
A permutation is an operation that changes two rows or two columns of a matrix 
which gives the minus determinant of the former matrix. Supposing the 2 × 2 matrix 
A has determinant D, if two rows or two columns of a matrix A are interchanged, 
then the determinant of the second matrix is –D. This is the antisymmetry property 
of the determinants. The transformation of matrix A into matrix B occurs by the 
permutation matrix, P. 

a11 a12 A =   , det A = D
a21 a22 
 

a
 a 
If B = 21 22 

  , then det B = −D
a11 a12  

det A = a a  11 22 − a21a12 

det B = a21a 12 − a a11 22 

The permutation matrix is derived from an identity matrix where the unit 
diagonal elements of the former are reordered in the latter. The multiplication 
of the permutation matrix over matrix A gives the matrix B (where the rows are 
interchanged). 

1 0 0 1I 2 =   , P =  
0 1  1 0 

 0 1  a11 a 12  a
 ⋅ 21 a22  

    =   
 1 0   a21 a 22  a11 a12   

13.  Antisymmetric wave function and the Slater determinant 
An alternating function has an antisymmetric property that by interchanging two 
variables it gives the value of the function multiplied by –1 (see Chapter thirteen). 

f x  ( 1, x 2 , x 3 ,..., x n ) = − f x( 2 , x 1, x 3 ,..., x n )
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When the matrix elements are functions, fi i
and so on) term of the determinant of this matrix, D, is an alternating function of its 
previous term of the determinant. The determinant of order n has n! permutations, 
i.e., operations of changing two rows or two columns in the matrix that give the 
minus determinant of the orginal matrix. 

f x  1( )  1 f x
D2 2  =

1( 2 )
x  = f x  1( )  1	 f 2 (x 2 ) − f x1( 2 ) f 2 ( )x

f x  2 ( )1 	  f x2 ( 2 )
1 

f x1( )  1 f x1( 2 ) f x  1( 3 )  f x  1( )  1	 f 2 (x 2 ) f 3 (x 3 ) − f x1( )  1 f 2 (x 


3 ) f 3 (x 2 )
D3x 3  = f x2 ( )  1 f x2 ( 2 ) f x  2 ( 3 ) =  f 1(x 2	) f x  2 (  3 ) f3 ( )  x 1 − f 1(x 2 )  f x2 ( )  1 f 3 (x 3 )

f x3 (  	 1) f x  3 (  2 ) f x3 ( )3  f1( )  x  3 f	 2 (x 1) (f x  3 2 )  − f 1(x 3 ) f 2 (x  2 ) (f x  3 1 )

If the matrix element, fi(xi), is a spin-orbital, then the determinant is called Slater 
determinant, although it was firstly used by Heisenberg and Dirac (see Chapter 
thirteen). Alternating functions are important to construct the antisymmetric wave 
function. 

14.  Properties of determinants and the Slater determinant 
If two rows or two columns of a determinant, D, are equal, then D = 0. Pauli exclusion 
principle states where two electrons are in the same orbital, then they cannot have 
the same spin-orbital. Then, in the Slater determinant, two rows or two spin-orbitals 
cannot be the same, i.e., f1 ≠ f2, otherwise, the Slater determinant (which represents 
the set of molecular orbital, MO, wave functions) is zero. 

To sum up, the properties of the determinants for square matrices (including 
comments on the Slater determinants, i.e., the MO wave functions), we have: 
 (i) 	 If any row of column of the matrix has only zero elements, its determinant is 

zero (there cannot exist one orbital with zero elements, even LUMO orbital has 
to have non zero elements, because otherwise the Slater determinant is zero). 

 (ii) 	 The determinant of a matrix, det(A), gives the same determinant with minus 
sign, –det(Â), after the operation (Ei) ↔ (Ek), with i  ≠ k. This corresponds to 
the antisymmetric property of a fermion (previous section). That is: det(A) =
–det(Â), where Â: (Ei) ↔ (Ek) 

(iii) 	  If a matrix has two rows or two columns with the same elements, then its 
determinant is zero. 

(iv) 	  If a matrix is obtained after the operation (λEi) → (Ei), then: det(Â) = λdet(A), 
where Â: (lEi) → (Ei). 

 (v) 	 If a matrix is obtained from the operation (Ei+lEk)  → (Ei), with i ≠ k, then: 
det(Â) = det(A), where Â: (Ei+lEk) → (Ei). The Slater determinant is the same 
after changing two orbitals by (Ei+lEk) → (Ei). 

(vi)	 If A and B are square matrices of the same order, then det(AB) = det(A)det(B) 
(vii) 	  The determinant of the transpose of a matrix is the same as the determinant of 

the original matrix, det (At) = det(A). Then, the MO orbitals can be in rows or 
columns of the Slater determinant. 

(x ), the second (or fourth or sixth 
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(viii) If the inverse of a matrix exists, then its determinant is: det(A–1) = 1/det(A). 
(ix)	 If A is an upper triangular or lower triangular or diagonal triangular, then: 

det(A) = a11a22a33...ann 

15. Eigenvector/eigenvalues and matrix diagonalization 
Let the matrix A have the following properties below. 

10 −4A =  − 12	 4  

10 −4  1 1   
= 2       12 −4 2 2         

10 −4  2 2   
= 4       12 −4 3 3         

The column matrices [1 2]T and [2 3]T are known as eigenvectors, u, and the 
scalars 2 and 4 are known as eigenvalues, l. By considering u as the matrix of the 
eigenvectors and l as the matrix of the eigenvalues, we have the eigenvalue equation 
below: 

Au = lu 

Indeed, A is the linear operator matrix in the equation above but it can also be 
represented by O, from operator. One can also represent u using other symbols as 
long as the relation above exists. 
All set of eigenvalue equations below 

OAk = lk Ak, k = 1,2,…n 

has one equation that encompasses all these equations. It is: 

OA = AD 

o o  o 1,1	 1,2 1,n
	 o o 2,1 o2,2  2, n O =	 ∴

    
 

 
 o	 o  o	 , n,1 n,2 n n   

a1,1 a1,2  a1,n  
 a a 2,1 a2,2  2, n A = ( A A2 ,... A ), n = 1	 
    
 

 
 
a a , n,1 an,2  n n   

l1 0  0 
 
 
0 l  0 2 D = 

    
 

 
 
 0	 0  ln  
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Where O is the linear operator matrix, A is the matrix representing the set of 
column eigenvectors of O, and D is the diagonal matrix whose diagonal elements are 
the set of eigenvalues of O. 

The process to find the diagonal eigenvalue matrix from the matrix A and linear 
operator O is called matrix diagonalization. It is only possible by knowing the matrix 
A, the set of eigenvectors of the linear operator, and the matrix operator O. 

OA = AD  

D = A–1 OA 

Let us use the following example: 

1 3 1 3 
O =   ; A =  

2 2 1 −2 

OA =  A−1 AD , D = OA 

 2 3  1 3 1    5 5   3   4 0      =
 1 −1       2 2 1     −2 0  −1 5 5  

One method to obtain the matrix diagonalization from a symmmetric matrix is 
called Jacobi method (see Section 38). 

16.  Similarity of the matrices 
Two square matrices, A and B, of order n, are similar, A ~ B, when the following 
rules are satisfied: 
 a.  If A ~ B, then det(A) = det(B); tr(A) = tr(B); and 
 b.  AP = PB, then B = P–1AP, where P is a nonsingular matrix. 

17.  Decomposition LU and spectral decomposition of a matrix. 
The square matrix A of order n can be decomposed in the product of two matrices L  
and U. The matrix L is a triangular inferior matrix and the matrix U is a triangular 
superior matrix. 

 a11 a 12  a1n 
 
 
a21 a 22  a

A =  2n 
 
    
 

 
 
 an1 a n2  ann  

 1 0  0 u 11 u12  u1n  
  
    l 21 1  0 0 
u  u

LU =     22 2 n 
 
       

     
  
     
  
ln1 ln2  1   0 0  unn  

A = LU 
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See the example below: 

 1 −3 2    1  0 0 1 −3 2   
        −2 8  1  −2 1 0 0 2  3− =          
 4 −6 5    4 3 1 0 0 −12          

If the square matrix A of order n has a set of eigenvalues, li (i = 1,2,...,n), 
represented by the diagonal matrix Λ, and a set of eigenvectors, ui (i = 1,2,...,n), 
represented by the matrix V (where columns represent the eigenvectors ui), then the 
matrix A can be decomposed as 

A = VΛV–1 

Which is known as the spectral decomposition of A. 

18. Transpose matrix in Fortran 
In the chart below, we depict one example of transforming the matrix F3x3 into its 
transpose FT. The basic procedure to install the Fortran editor, Fortran compiler and 
how to understand the fundamentals of algorithm and Fortran language is given in 
Chapter One. 

!name of the program: TRANSPOSE 
!Building a 3x3 matrix and its transpose

 INTEGER*4 F(3,3),FT(3,3)

 Print *, ‘Enter the matrix elements column by column: ‘

 Read *, F

 Print *, ‘Matrix F 3x3: ‘

 Print *, F(1,1),F(1,2),F(1,3)

 Print *, F(2,1),F(2,2),F(2,3)

 Print *, F(3,1),F(3,2),F(3,3)

 Call MATRNS(F,FT)

 Print *, ‘Matrix transpose FT 3x3: ‘

 Print *, FT(1,1),FT(1,2),FT(1,3)

 Print *, FT(2,1),FT(2,2),FT(2,3)

 Print *, FT(3,1),FT(3,2),FT(3,3)

 stop

 end


 Subroutine MATRNS(F,FT) 
Integer*4 F(3,3),FT(3,3) 
Do 2 J=1,3

 Do 2 I=1,3
 FT(J,I)= F(I,J) 

2 continue 
return 
end 
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19. Matrix multiplication in Fortran 
In the chart below, it is depicted the Fortran implementation for matrix product 
between two square matrices of order 3. It can be easily modified for any order. Try 
out the matrices given in the first section, F and G. 

!name of the program:MULT 
!Building two 3x3 matrices F, G and their multiplication FG

 INTEGER*4 F(3,3),G(3,3), FG(3,3)
 Print *, ‘Enter the matrix elements column by column for F: ‘

 Read *, F
 Print *, ‘Matrix F 3x3: ‘
 Print *, F(1,1),F(1,2),F(1,3)
 Print *, F(2,1),F(2,2),F(2,3)
 Print *, F(3,1),F(3,2),F(3,3)

 Print *, ‘Enter the matrix elements column by column for G: ‘
 Read *, G
 Print *, ‘Matrix G 3x3: ‘
 Print *, G(1,1),G(1,2),G(1,3)
 Print *, G(2,1),G(2,2),G(2,3)
 Print *, G(3,1),G(3,2),G(3,3)
 Call MATMPY(F,G,FG)
 Print *, ‘Matrix multiplication FG 3x3: ‘
 Print *, FG(1,1),FG(1,2),FG(1,3)
 Print *, FG(2,1),FG(2,2),FG(2,3)
 Print *, FG(3,1),FG(3,2),FG(3,3)
 stop
 end
 Subroutine MATMPY(F,G,FG) 

Integer*4 F(3,3),G(3,3),FG(3,3)
 Do 2 J=1,3
 Do 2 I=1,3

 FG(I,J)=0
 Do 3 K=1,3 

FG(I,J)= FG(I,J)+F(I,K)*G(K,J) 
3 continue 
2 continue

 return 
end 

Another Fortran code is shown below. In this case, it is possible to choose any 
types of matrices and it is used the intrinsic function MATMUL. 
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!name of the program:MULT2 
! matrix multiplication AxB=C 
integer , allocatable :: A(:,:), B(:,:), C(:,:)
 
integer :: m, n, o, i, j
 
Print *, “Enter the dimensions of matrix A(m,n)”
 
Read *, m, n
 
allocate(A(n,m))
 
Print *, “Enter the dimension o of matrix B(n,o)”
 
Read *, o
 
allocate(B(n,o))
 
allocate(C(m,o)) 
Do i=1,m

 Do j=1,n
 Print *, ‘A(‘,i,’,’,j,’)= ‘ 

Read *, A(i,j)
 End do 

end do 
do i=1,m 
write (*,*) (A(i,j),j=1,n) 
end do 
print *, 
Do i=1,n

 Do j=1,o 
Print *, ‘B(‘,i,’,’,j,’)= ‘ 
Read *, B(i,j)

 End do 
end do 
do i=1,n 
write (*,*) (B(i,j),j=1,o) 
end do 
print *, 
C=matmul(A,B) 
do i=1,m 
write (*,*) (C(i,j),j=1,o) 
end do 
print *,

 stop
 end 

20. Gaussian operation in Fortran 
The source code presents one operation of the Gaussian elimination method: 
swapping the first two rows. 
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!program name: GAUSS 
!Gauss elimination a matrix of order n 
!Input dimension of the matrix and its elements 
!This program does one Gauss operation: swapping two rows 
Integer :: n,i,j

 Integer, dimension(:,:), allocatable :: A,elem
 Print *, ‘Enter the dimension, n, of the square matrix A: ‘ 

Read *, n
 
Allocate( A(n,n) )
 
Allocate( elem(n,n) )


 Do i=1,n

 Do j=1,n

 Print *, ‘A(‘,i,’,’,j,’)= ‘
 

Read *, A(i,j)
 End do 

End do
 Do i=1,n


 Do j=1,n

 Print *, ‘A(‘,i,’,’,j,’)= ‘, A(i,j)
 

End do
 End do
 ! sawpping first and second rows 

Do j=1,n 
elem(2,j)=A(1,j) 
elem(1,j)=A(2,j)

 end do 
do i=3,n

 do j=1,n 
elem(i,j)=A(i,j) 
end do

 end do
 Print *, ‘The matrix, B, after one Gauss operation is: ‘ 

Do i=1,n
 Do j=1,n 

Print *, ‘B(‘,i,’,’,j,’)= ‘, elem(i,j) 
End do

 end do
 Deallocate (A) 

Deallocate (elem) 
stop 
end 
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21. Determinant of a square matrix of order 2 or 3 in Fortran 

!programname:DETERMINANT 
! Program for square matrices of order 2 or 3 
!----------------------------------­
Integer :: n,i,j 
real,dimension(:,:),allocatable :: A 
integer::k,l,s 
integer::nh,m 
real,dimension(:,:,:),allocatable::minor 
real,dimension(:),allocatable::det 
real :: lap_det

 Print *, ‘Enter the dimension, n, of the square matrix A: ‘ 
Read *, n 
Allocate( A(n,n) )

 Do i=1,n

 Do j=1,n

 Print *, ‘A(‘,i,’,’,j,’)= ‘
 

Read *, A(i,j)
 End do 

End do
 Do i=1,n 

write (*,*) (A(i,j),j=1,n) 
End do 
!---------------------------------------­

print *, 
allocate(minor(n,n-1,n-1))

 do k=1,n-1

 i=1+k

 do l=1,n-1
 

j=1+l 
minor(1,k,l)=A(i,j) 
end do 
end do

 do k=1,n-1

 i=1+k

 j=1

 do l=1,n-1
 

minor(2,k,l)=A(i,j) 
j=l+2

 end do 
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end do 
do k=1,n-1

 i=1+k
 do l=1,n-1 

j=l 
minor(3,k,l)=A(i,j) 
end do 
end do

 do s=1,n 
Do k=1,n-1 

write (*,*) (minor(s,k,l),l=1,n-1) 
End do

 print *, 
end do
 !----------------------------------­
allocate(det(n)) 
If(n==3) then 
do i=1,n 
det(i)= (minor(i,1,1)*minor(i,2,2))-(minor(i,1,2)*minor(i,2,1)) 
print *, det(i)

 end do 
else 
do i=1,n 
det(i)=minor(i,1,1) 
end do 
end if 
!--------------------------­
lap_det=0.

 do i=1,n

 m=i
 

nh=m/2
 if(2*nh==m) then
 sign=-1
 else
 sign=1
 end if 

lap_det=lap_det+(sign*A(1,i))*det(i)
 print *, lap_det, 2*nh, sign

 end do 
print *, 
print *, lap_det 
!-------------------------------------------------­
stop 
end 
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22.  System of non-homogeneous linear equations 
A linear equation has two or more variables (x1, x2,…,xn) along with their respective 
non-zero coefficients (a1, a2,…,an), as parameters of the equation, plus a zero or non­
zero element b. 

a x1 1  + a2x 2 + ... + an n  x + b = 0

A system of non-homogeneous linear equations is a collection with two or more 
linear equations whose variables are the same in all the linear equations of the system. 

a x  11 1 + a12x 2 + +... a1n n  x + b 1
 = 0
a x21 1 + a22 x2 + +... a2 n nx + b2  =
 0 
a x  31 1 + a32 x 2 + +... a3n n   x + b 3 = 0  

 

a x  nnn1 1 + an 2 2  x + +... a x  nn n + b  n = 0

The matrix form of the system of the non-homogeneous linear equations is: 

a11 a 12  a 1n   x 1  b1 
     a21 a22  a x

A 2n 2 b
=   , X =   , B =  2 


     

  



      
an1 an2  ann  xn  bn 

AX + =B 0  

Where X is the solution column matrix of the linear equations. 

23.  Solutions of system of non-homogeneous linear equations 
One solution for the system of linear equations is: 

X = A–1B 

This is a consequence of some properties of the identity matrix: 

I = A–1A 

IX = X 

Then, the multiplication of both sides of previous equation by A–1 gives: 

A −1 (AX) = A−1B 
(A −1 A X  ) = A−1B  
IX = A−1B 
X = A B  −1
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Another method to solve the system of linear equations is the Cramer’s rule: 

a 11 a 12  a 1n

a
D = 21 a 22  a 2n

    

a n1 a n2  a nn

 D1 D 2 Dx 1 = , x 2 = , x 
D n = n

D D 
a11 a 12  b1 

a a 
where D = 21 22  b2

n 
    

an1 a n2  bn 

D1 is obtained from the replacement of the first column by the column matrix B. 
D2 is the obtained from the replacement of the second column by the column matrix 
B, and so on. 

A third method to solve the system of linear equations is to apply backward 
substitution after Gaussian elimination (Section 6). The augmented matrix Â is: 

a11 a12  a  1n b1  a11 a12  a1n a1, n+1  
    a a  a b a a  a a

Â  = [ A b  , ] =  21 22 2n 2  =  21 22 2n 2, n+1

 
       

      
    
 an 1 a n 2  a nn b  n   a n 1 an2  ann an, n +1  

After Gaussian elimination procedures, it becomes: 

a11 a 12  a1n a 1, n+1 
 0 a 22  a2n a

Â  2, n+1 = 
 
     
 

 

 0 0   ann an, n +1  

Which yields a triangular linear system: 

a x  11 1 + a12 x 2 +  + a1n n   x = a1, n+1 

a x  22 2 +  + a2n n   x = a2, n+1 

  

a x  2n n = an n, +1 

Where: 
a

x = n n, +1
n  

ann 

a
x = n−1,n+1 − an−1,n xn

n−1  
an−1,n−1 
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And so on. The general solution is: 
n 

a − a x  i n , +1 ij j∑ j i+1=
i i n  1, n 2,...2,1 x =  ∴ = −  −  

aii 

The procedure fails if at the ith step the pivot element aii is zero. This is known 
as Jacobi method. See Section 37. 

24. System of homogeneous linear equations 
When all bn elements are zero, the system of linear equations is called homogeneous. 
a x  + a x ... a x = 0+ +11 1 12 2 1n n  

a x  + a x ... a x = 0+ +21 1 22 2 2n n  

a x  + a x ... a x = 0+ +31 1 32 2 3n n  

 

a x  + a x ... a x  = 0+ +nn 1 n2 2  nn n 

The matrix equation of the homogeneous system of linear equations is: 

AX = 0, B = 0 

The above equation is called homogeneous matrix equation and it has at least the 
zero solution, i.e., X = 0 or a trivial solution. Some homogeneous system of linear 
equations have only trivial solution and other have trivial and non-trivial (non-zero) 
solutions. 

25. Secular homogeneous linear equations 
The secular homogeneous equations have a different type of element b in each 
equation of the system: a common parameter in all equations of the system, l, 
multiplied by the xith variable of the row i, i.e., lxi. 

a x  + a x ... a x = l+ +  x11 1 12 2 1n n  1 

a x  + a x ... a x = l+ +  x21 1 22 2 2n n  2 

a x  + a x ... a x = l+ +  x31 1 32 2 3n n  3 

 

a x  + a x + +... a x  = lxnn 1 n2 2  nn n n 

By passing the right side of each equation above to the left side, then we have: 

(a − l ) x + a x  + + a x = 0...11 1 12 2 1n n  

(a − l ) x + + a x = 0a x  + ...21 1 22 2 2n n  

a x  + a x + a − l x ... a x = 0+ +31 1 32 2 ( 33 ) 3 3n n  

 

a x + + (a − l ) x = 0a x  + ...nn 1 n2 2  nn n 
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The secular homogeneous equations have non-trivial solution only if the secular 
determinant below (the determinant of the coefficients) is zero. 

( a 11 − l) a 12 a 13  a 1n

a 21 ( a 22 − l) a 23  a 2n

D = a 31 a 32 ( a 33 − l)  a 3n = 0
     

a n1 a n2 a n3  ( a nn − l)

Then, one has to find the n roots of the secular equations—the n solutions for 
the l parameter—in order to find the non-trivial solutions for the secular equations. 
See Section 34. 

26.  Complex numbers and properties of the complex unit 
The complex numbers are an extension of the real numbers where there is an element 
which represents the square root of –1, called the imaginary unit, i. A complex 
number is represented by Z composed of a real part, a, the imaginary part, bi. 

Z = a + bi,  i = √ –1 

Any power of the complex unit belongs to the set {i, –i, 1, –1}. 

i = −1 

i 2 = −1 

i 3 = −i 

i 4 = 1 
1 ii −1 = = = −i
i i 2

27.  Complex conjugate and Euler’s formula 
The complex conjugate of Z is the one where the sign of the imaginary part is 
switched. The complex conjugate is represented by Z*. 

z* = a – bi 

The product of the complex number and its conjugate, ZZ*, gives a real number, |Z|2 

zz * = z 2 = ( a + bi )(  a − bi ) = a 2 + b2 

Any complex number can be represented in the Euler’s formula (see Chapter two). 

Z = a + bi = re iθ 

Z * = a − =bi re −iθ

e iθ = cos θ + i sin θ 

Where r and θ are the radial and angular terms of the polar coordinate. 
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28. Hermitian matrix and unitary matrix 
Hermitian operator or self-adjoint operator in matrix algebra is called Hermitian 
matrix, A, when it is equal to its conjugate transpose, AH or A† (A dagger). 

A = AH = A† , A is Hermetian 
H † * TA = A = (A )T 

= (A )* 

Let us suppose A as a complex matrix, then its conjugate transpose is: 
* * *
a11 a12 a13  a11 a21 a31 
 

   * * * 
A = a21 a22 a23  , AH = a12 a22 a32  
 * *a a a *  31 a32 33  a13 23 a33  

A Hermitian matrix is a square complex matrix whose main diagonal elements 
are real and its off-diagonal elements are complex where the diagonally-opposite 
entries are complex conjugates. For example: 

 m a − ib c − id  
 a + ib n e − if ∴ , ,m n o ∈   
c + id e + if o   

Let us find the conjugate transpose for the matrix below from one example the 
example below: 

3 + i 2 3  −  + i 1
A =  

1 2− i 2 2i  

*  3 − i 2 3  −1 − i
A =  1 2i 2 −2i+ 
 

 3 − i 1 2  
+ i 
* T  − (A ) = 2 3i 2 
 

 −1 −2i 
  
*A ≠ (A )T 

In this case, the conjugate transpose, (A*)T or (A†) is different from the matrix A. 
Let us take now another example: 

 3  2 3+ iA =  2 3− i 1 
 

 3  2 3− i
A* =  2 3+ i 1  

* 3 + iT  2 3(A ) =  2 3− i 1  
* HA = (A )T 

= A 
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In this last case, the conjugate transpose, (A*)T, is equivalent to the matrix A and 
this matrix is Hermitian. 

A Hermitian matrix A of NxN order has N linearly independent and orthogonal 
eigenvectors and all Hermitian matrices are diagonalizable. For a Hermitian matrix, 
all eigenvalues are positive. 
The Hermitian matrix A can be written as: 

A = PΛP–1 

Where P is a nonsingular column matrix and Λ is the diagonal matrix. A non-
singular matrix has a non-zero determinant. 

As a consequence of the properties of the Hermitian matrix, the diagonal matrix, 
Λ, can be given from the similarity transformation of A: 

Λ = P–1 AP 

A square matrix A is diagonalizable whenever A is similar to its diagonal matrix 
and it has a complete set of eigenvectors. 

In addition, the Hermitian matrix, A, is used in the decomposition of the unitary 
matrix U to obtain the triangular matrix T (Schur’s theorem). 

T = U–1AU 

The unitary matrix is a complex square matrix whose its conjugate transpose is 
also its inverse matrix and it has determinant as a unit. The properties of a unitary 
matrix are: 

−1 †U = U 
†U U  = I 

det( U) = 1 

Where I is the identity matrix. The identity matrix is a diagonal matrix where all 
diagonal elements are 1. 
The general expressions of the 2 x 2 unitary matrix is: 

 a b  2U = , a + b 2 = 1 iϕ * iϕ * 
−e b  e a   

If v is an arbitrary eigenvector of the Hermitian matrix A, then: 

v†(Av) = λv†v 

The Jacobi method is produced by splitting the Hermitian matrix, A, into: 

Jacobi : A = D + N 

Where D is the diagonal part of A and N is the matrix containing the off-diagonal 
elements of the matrix A.
 
In the Gauss-Seidel method, the splitting of the Hermitian matrix is:
 

Gauss – Seidel : A = (D – L) – U
 

Where D is the diagonal part of A and –L and –U contain the elements below 
and above the diagonal of A, respectively. 
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29.  Vector space and basis set 
A  vector space is a set of vectors. In a simplified definition, a vector is an entity 
represented by an arrow having a specific magnitude and direction (with angle f) 
while a scalar has no direction. Examples of vectors are velocity and force. However, 
functions can also be vectors. 

A vector might be 2-dimensional, 3-dimensional (in real space) or n-dimensional 
(n > 3). Since vector might have n-dimensions (n > 3), a vector might be considered 
as an abstract mathematical object. 

A vector in a real space, A, has three elements, A(a1,a2,a3), that is, a 3-dimensional 
vector with f direction, and it can be represented by row matrix or column matrix. 
In addition, any n-dimensional vector can be represented as row or column vector. 

1 ϕ = − a a a2 2 2

 e 

 

1 + +2 3
 

π 
A = (a a1, ,  2 a 3 )
A = [a1 a2 a 3 ]
A column vector can be represented alternatively by: 

 a1  
 A [ = a 2 = a1 a 2 a    3 ]T 

  a3  
A basis set is a set of linearly independent vectors (basis vectors) which spans 

a vector space and it is used to construct a vector upon a linear combination of the 
basis of the vector space. Any other vector in this vector space is linearly dependent 
on the basis set and it may be expressed as a linear combination of the basis vectors.

 For example, a unit vector, u, has a unit value of magnitude in one direction 
exclusively (x, y or z) and zero value in another two directions. Then, there are 
three unit vectors, ux, uy  and uz.  This set of three orthogonal unit vectors is a type of 
basis set. Below, it is depicted the vector A as a linear combination of the three unit 
vectors, ux, uy  and uz, as a basis vectors. 

u x = [1 0 0]
uy = [0 1 0] 
u z = [0 0 1]

A = (a 1, ,  a 2 a 3	 ) ∑
3 

= a ui i
i=1
 

The basis vector can be abbreviated as < n| as a row vector or |n > as a column 
vector. For a n-dimensional basis vector, the vector f can be represented as: 

 n1 
 n

f = c n  + c n  +c n  = c  2 
1 1  2 2  n n  [ 1 c 2  c n ]  

 
 
 nn
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This is the method used to obtain molecular orbitals form atomic orbitals as 
basis set {n}, where f represents a determined molecular orbital, MO, and c1,c2,…,cn 
are the coefficients of this MO. This method is also used to obtain the wave function 
by means of the superposition principle (see Chapter ten) where the basis set is a set 
of eigenvectors. It is also used to obtain the guess function (from its expansion) in the 
variational method (see Chapter eighteen). 

30. Matrix multiplications of vectors 
There are two types of multiplication of vectors: the dot product (or scalar product) 

and the cross product (or vector product).
 
The dot product is an operation between two vectors that yields a scalar amount.
 

⋅ =A B  A B  cosθ 

Where ||A|| is the module (or the norm) of vector A and θ is the angle between 
vectors A and B. 
Then, the angle between two vectors is: 

A B  ⋅ cos θ = 
A B  

When the dot product is zero, the vectors are orthogonal (θ = 90o). 
The dot product can be represented in terms of matrix algebra as the multiplication 

of the row vector A and the column vector B, BT, which is the transpose of vector B. 

  
  
T   
  

b1 

A B AB = a a a b = a b  + a b  + a b  ⋅ =  [ 1 2 3 ] 2  1 1  2 2  3 3   
 b3   

The inner (scalar) product of two complex vectors is: 
  
  

† * * *   
  
b1 

A B  A B  = a1 a2 a3  b2⋅ =      
  
  
b3   

The cross product is an operation between two vectors which yields another 
vector in the direction of n, the unit vector perpendicular to the plane determined by 
vectors A and B. 

A B  A B  sinθ )n× = ( 
The cross product can be represented in terms of matrix algebra, where i, j and 

k are unit vectors for the vector basis n. 

 i j k 
 
 
× = a aA B  a 1 2 3 
 

b1 b2 b3  
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A× =B  (a2 3  b  i + a3b  1j+ a b  1 2  k ) − ( a3 2b  i + a b1  3j+ a2b  1  k ) 
A B  × = (a2b  3  − a3b  2  ) i + ( a3b  1 − a b  1 3  ) j+ ( a b  1 2  − a2 1  b  )k

a a
A B  × = 2 3  a1  a3  a1 a2  

  i   −  j+     k  
b2 b3  b1  b 3  b1 b2  

Vector (or cross) product is important for representing the components of the 
angular momentum (see Chapter sixteen). 

31.  Normalization of the vector and orthonormality 
A normalized vector has a unit length. Let us suppose the normalized vector A  
(a1,a2,...,an). Then, we have: 

A AT =1 
a1  
  
  
  a [ a ] 

1 a 2  a 2  

n =1


   

   
an   

A AT = (a2 + a2 2
1 2  + +... a n  ) =1

For a not normalized vector B (b1,b2,...,bn), we have: 

BT B ≠ 1 

In order to normalize this vector, we have to assume B2 has to be a unit. Then, 
we find the normalization constant, N: 

B B  T = B2 = b2 + b 2 + +... b 21 2 n  =1
1N = 

norm 
norm = B = b 2 + b 2  + +... b2

1 2 n  

Where ||B|| is the norm of the vector B. Then, the normalized vector, BN, is 

1 BN = (b b  , ,..., b  )
b2

1 + b 2 ...
1 2 n 2  + + b2

n  

If a pair of vectors is orthonormal, they are orthogonal and they are unit vectors. 
Let us suppose a pair of 2-dimensional orthonormal vectors U(u1, u2) and V(v1,v2). 
Then, we have: 
u 1 v1 + u2v2 = 0 

u 2 
1 + u2  2 = 1 

v 2 + 2 
1  v2 = 1 
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The orthogonalization of basis vectors in quantum chemistry, i.e., the atomic 
orbitals, facilitates the integral calculations. When the basis set is not orthogonal, 
one can use Lowdin or Schmidt methods of orthogonalization. Usually, more than 
two atomic basis vectors are used and one vector, e.g., orbital 1s, is chosen to be 
fixed while all other vectors are orthogonalized with respect to it. This is the Schmidt 
orthogonalization. 

The dot product, or overlap, between members of an orthonormal set of vector 
is represented by the Kronecker delta. 

fT 
j ⋅fk  = f fj  k  = δ jk   = 0

fT 
j ⋅ =f j  f fj  j  = δ jj   =1

Where < ϕ| is the row vector and |ϕ > is the column vector. 

32.  Eigenvector in vector space 
An eigenvector is a vector that changes only a scalar factor after a linear transformation 
of an operator acting on it. An operator can be represented by a matrix, O, acting on 
a vector space V in the vector A to yield another vector B which is a scalar, l, of the 
vector A. Below, the linear transformation in a generic vector space with n elements. 
OA = B = lA 

o 1,1 o1,2  o 1,n  a1   b 1   a1 
        o 2,1 o2,2  o2, n a2 b2 a    =   = l  2 

     


 

   
 

        
on,1 o n,2  on n  ,  a   b   a
 n n  n 

Next, it is shown the linear transformation in a real space where n = 3. 

OA = B = lA 

 o1,1 o 1,2 o 1,3   a1 b    a
 

1 1 
      o2,1 o2,2 o 2,3 a 2 = 2 l b = a      2

 o3,1 o 3,2 o   a3 b3      a 3,3      3

The equation above is called an eigenvalue equation, the operator O is a linear 
operator, the scalar l is called eigenvalue and the vector A is called eigenvector. 
Important to add that not all operators are linear, i.e., they act on a vector under a 
linear transformation (an eigenvalue equation). 

The linear operator of order n yields a set of n eigenvalues and n eigenvectors, 
one eigenvalue for each eigenvector. 
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Two important properties of eigenvectors are: 
 (1)  If the linear operator O is a real, symmetric matrix, the eigenvectors of different 

eigenvalues (lj ≠ lk) are orthogonal, that is: 

A AT
j k = 0

a1   
   a[a 2 

1 a2  an ]  =
j 

0

   

   
an k  

Then, eigenvectors from different eigenvalues, are orthogonal, that is, their dot 
product is zero (see previous section). 

A A  T 
j ⋅ k = A j Ak cos θ = 0

 (2)  As for the eigenvectors of the same eigenvalues (degenerate eigenvalues) they 
are orthogonal or can be made orthogonal. 

Two important vector spaces are: the Euclidean vector space (whose basis set 
is real) and the Hermitian vector space (whose basis set is complex). One important 
difference between these vector spaces lies in the inner (dot) product: 

Eucledian : A B  = a1 1  b + a2 b 2 + +... an n   b 

Hermitian : A B  = a*b + a* b + +... a*
1 1  2 2  n n  b 

33.  Unitary transformation and linear transformations 
A transformation in linear algebra converts a n-dimensional vector space into 
m-dimensional vector space, where n ≥ m. A matrix multiplication is a type of 
transformation. For example, one n x n matrix multiplying a n-dimensional vector to 
give a n-dimensional row vector. 

c1,1 c1,2  c1,n 
 
 
c

[ 2,1 c 2,2  c
n n  2, n 

1 2  n n ] = [f f  f ]
    
 1 2 n 

 
 
 cn,1 c n,2  cn n  , 

A unitary transformation occurs by means of a unitary matrix, U, in a Hermitian 
vector space. An orthogonal transformation occurs by means of an orthogonal 
matrix, O, in a Eucledian vector space. Both of them preserve the normalization and 
orthogonality of vectors. A rotation of a vector in a 2-dimensional real (Eucledian) 
vector space is a type of orthogonal transformation. 
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For example, let us rotate the 2-dimensional vector V(x,y) from α to β angle 
in the (x,y) vector space to form the vector V’(x’,y’). The modulus of V ||V||, v, is 
preserved during the rotation. 

V = v 
V(x y  , ) → V '(x ', y ')
α → ∴ β β > α   

x ' = v ⋅cos(  α β+ ) = v ⋅cos α cos β − v sin α sin β 

y ' = v ⋅sin(  α β+ ) = v ⋅sin α cos β + v cos α sin β 

x = vx v  = ⋅.cos cos βα = v ⋅cos α  

y = vy v  = sisinn  αβ = v sin α 

x '  c os α −sin α  x  
  =     
 y '  s in α cos  α   y  

Another important transformation is called linear transformation. In the pair of 
linear equations below, the coordinate of the 2-dimensional vector changes from 
(x,y) to (x’,y’) by the action of four coefficients a1, b1, a2 and b2. 

x'= a1x + b1y 
y'= a2x + b2 y 

Which can be described in the matrix form: 

 x '    a b
 = 1 1  x 

    
 y '    a2 b 2  y
r' = Ar 

The equations above are matrix and vector forms of the linear transformation 
where r and r’ are column vectors/matrices representing the coordinates before and 
after the transformation of the coordinates and A  is the operator (a linear operator) or 
the transformation matrix which transforms r into r’. 

Should an operator O be linear, then it must satisfy the eigenvalue equation 
which is a linear transformation. Besides eigenvectors, one can use eigenfunctions 
f(x). Then: 

Of (x) = λf (x) 

As a consequence, all quantum operators must perform linear transformations. 
A linear transformation occurs by means of a linear operator A (that can be a 

square matrix) acting on an eigenvector X  to yield a new eigenvector Y  that is lX, 
where l is a scalar. 

AX = Y = lX 

a11 a 12  a1n   x 1   y 1   lx 1 
         a21 a 22  a2n x y lx   2  =  2  =   2 

     


  

   
   

         
an 1 an2  a nn  xn   y n   lx n 
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For a linear operator 3x3 matrix  A acting on a tridimensional vector, the linear 
transformation is: 
A X  3,3 3 = Y3 

 a11 a12 a  13   x1   x a  1 11 + x2a  12 + x3a  13   lx 1   y1 
            a 21 a22 a 23 × x 2 = x1a        21 + x2a  22 + x3a  23 = lx   2 = y   2 
          
 a31 a32 a  33   x3   x a    

1  31 + x2a  32 + x3a  33   lx 3   y3 

The square 2 x 2 matrix A (depicted below) and the vector X (depicted below) 
is an eigenvector with eigenvalue 1. 

2 1   3
A =   , X  =  

1 2     −3 
  

2  1  3 2 ⋅3  +1⋅ −( 3)   3
   3
AX =       =  = =1

3    1 2 3 1 2 ( 3) 3  ⋅  
    −  ⋅  + ⋅ −    −   −3

On the other hand, the vector Y below is not an eigenvector for the linear 
operator A. There is no eigenvalue associated with Y from the linear operator A. 

2 1   0
A =   , Y  =  

1 2     1 
  

2 1 0 2 ⋅0   + ⋅1 1 1
AY =      =   =  
1  2 1   1⋅ +0   

  2 1  ⋅  2

Let us see whether the differential operator, Dx or d/dx, is linear or not. 

d x n = nx n−1 , x n−1 = xn ⋅ x−1

dx 
d n nx = x n , l = n x
dx x 

Then, the differential operator is a linear operator. Other simple cases of linear 
operators are the identity operator, I, and the multiplication operator, X. 

If(x) = f(x) 

Xf(x) = xf(x) 

34.  Eigenvalues-eigenvectors in system of secular homogeneous 
linear equations 

In the eigenvalue equation from matrix algebra below, it can be rewritten in the 
following way: 

OA = lA 

(O – lI)A = 0 

Where O is the linear operator in a square matrix, A is a column vector, l is a 
number and I is the unit matrix. 
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From a generic square matrix of order n for the linear operator O and a 
eigenvector A represented by column matrix of order n, the above equation yields a 
system of and they (or characteristic polynomial): 

o − l a + o a + o a  ...+ a a = 0( 11 ) 1 12 2 13 3 1n n  

o a  + (o − l )a + o a ... + o a = 021 1 22 2 23 3 2n n  

o a  + o a	 + o − l a ... o a = 0+ +31 1 32 2 ( 33 ) 3 3n n  

 

o a + o a + o a ... + (o − l )a = 0nn 1 n2 2 n3 3  nn n 

The secular equations have trivial solution (A = 0) and they can have a non­
trivial solution for 

det( O − lI) = 0 

Giving n eigenvalues (l1, l2, ...l ) as the non-zero solution set or eigenvaluen
spectrum of the eigenvector A. 

The O-lI is the singular matrix and the linear system is defined as:
 

(O − lI)A = 0 
A ≠ 0 

Where A is the eigenvector (a column matrix). 
When the coefficients of the eigenvector are unknown, then, for each lk as 

solution, there is a corresponding Ak eigenvector, i.e., there are n eigenvectors and n 
eigenvalues as solution set. 

OA = l A	 , k =1, 2,... nk k k 

See the example below: 

	 x−2  1 1    
  
     
  O = −11	 4 5 , A = y     
  

−1 1 0 z
 	           

 −2  1 1    x x   
         −11 4 5	 ⋅ y = l y 	         

 z −1 1 0    z     	         

The elements x, y and z are column eigenvectors. 
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It yields the secular equation below: 
2x y z  = lx−  + +

−11x +  + =  4 y 5z l y 
x y  0z = lz− + + 
  

( 2  l) y z  0
− −  
 ( ) −11 4 − l 5 = 0  
  −x y (−l)z 0 

2 l 1− −  1 
det (O − lI) = 0, D = −11 4 − l 5 = 0 

−1 1 −l 

Whose solution set of the eigenvalues is {–1, 1, 2}. Each eigenvalue yields a 
corresponding eigenvector as solution. By using the expression: 

(O − lI)A = 0 

Let us begin with l1 and eigenvector x: 

l1 = −1, 

 −1  1 1
 −11 5 5 ⋅ 
 −1  1 1 

Then, we have: 
x = + x x1 2 3 

x  x 0     
        

1 1 

x2 = 0 , x = x2        
  x 0     x3  3      

−11( x x ) 5x + 5x = 0+ +  2 3 2 3 

6x2 6x3 = 0− −  

x2 = −x3 

The trivial solution is x = [0,0,0]. If x3 = 1 , 
For l2 and eigenvector y: 

l2 =1, 

 1    1−3 1 1  y 0 y    
         −11 3 5 ⋅ y2 = 0 , y = y2           

1    y −1 1 −  y 0    3    3    

x2 = –1 and x1 = 0. 
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Then, we have: 

3y y y = 0−  + +  1 2 3 

−11y + 3y + 5y = 01 2 3 

y y y = 0− +  −  1 2 3 

y1 = y2 − y3 

− ( y2 − y3 ) +  +  2 y3 = 03 y 
−2y2 + 4 y3 = 0,  y2 = 2 y3 

y = y1 3
 

3 ( ) 3
−11y + 3 2 y3 + 5y3 = 0, y = 0 

The trivial solution is y = [0,0,0]. If y3 = 1 y2 = 2 and y1 = 1. , 
For l3 and eigenvector z: 
l3 = 2 

−4 1 1         z1 0 z1     
          −11 2 5 ⋅ z = 0 , z = z       2 2     
 −1 1  −2       z3 0   z3        

Then, we have: 
−  + + =  1 z2 z 0,  4 1 z2 z34z 3 z = + 
  

1 z2 2z3 = 0,  z1 = −  2z3
− +  −  2z z 
4 z − 2z z z , 4z −8z = +  z= +  z( 2 3 ) 2 3 2 3 2 3 

3z − 9z = 0,  z = 3z2 3 2 3 

z = −  z 2 ,z z = 3z − 2z = z1 2 3 1 3 3 3 

−11z + 6z + 5z = 0, z = 03 3 3 3 

The trivial solution is z = [0,0,0]. If z3 = 1 z2 = 3 and z1 = 1. , 
The matrix A is made up with the columns from the eigenvectors x, y and z. 

0 1 1         
       x = −1 ,y = 2 , z = 3 ,  A = [x y z]         
   1    1  1         

 −2  1 1  0 1 1 −1 0 0 
     O = −11 4  5 ,  A = −1 2  3 ,  D = 0 1 0      
 −1 1 0  1 1 1  0 0 2      

Where D is the diagonal matrix whose diagonal elements are the set of 
eigenvalues of O. As we will see in Section 8: 
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OA = AD 

 −2 1 1  0 1 1   0 1 2  
       −11 4  5  −1 2 3  = 1 2 6         
 −1 1 0  1 1 1    −1 1  2         

 0 1 1 −1 0 0   0 1 2  
       −1 2 3  0 1 0  = 1 2 6         
 1 1 1  0 0 2    −1 1  2         

From the matrix O below 

10 −4 10 − l −4 O = ∴det( O − lI) =   12 −4 12 4− − l    
det( O − lI) = (10 − l)( 4 l − = 0) 12( 4) − −  − 
  

2 6l + = 0, l = { }
 l − 8 2,4 

Two important features of the linear matrix operator, O, are: 
n
 

( )  = ∑li
Tr O 
i=1 

n 

det( ) = ∏liO 
i=1 

Then, from the last example above, trace of O is 2 + 4 = 6 and determinant of 
O is 2 x 4 = 8. 
Since the eigenvalues of a Hermitian operator Onxn are real, they can be ordered as: 

l ≥ l ≥ ≥ l1 2 n

35. Characteristic polynomial and the characteristic equation 
The characteristic polynomial, p(l), is: 

p( ) = det(O − lI)l 

which can be written as: 

n n n−1 n−2l = −1 o op( ) ( ) l + 1l + o2l + ... + n−1l + on 

And the characteristic equation is: 
n n−1 n−2 nl + c1l + c2l + ... + cn−1l + cn = 0∴ci = (−1) oi 

Where: 
trace(O) = l1 + l2 + ...ln = −c1 

ndet(O) = l1l2ln = (−1) cn 
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The characteristic equation can also be written as: 

O − lI = (l1 − l)(l  2 − l ) (l  N − l) = 0

O − lI = det(O − lI) 
For linear operator matrices, O, which are diagonal or triangular, the characteristic 

equation is straightforward because their diagonal elements are the eigenvalues of a 
given eigenequation 

1 0 0 
 O = 0 2 0  
0 0 3 
 

O − lI = (1− l)(2  − l)(3  − l)

1 0 0 
 O = 3 2 0  
1 2 3 
 

O − lI = (1 − l)(2  − l)(3  − l)

For the example below, let us consider the first form of the characteristic 

equation. 

 2 0 0 
 O 0  = 3 4  
 0 4 9 

 2 0 0  1 0 0 2 − l 0 0 
 O − l I = 0 3 4   − l 0 1 0  = 0 3 − l 4     
    0 0 1 0 4 9  0 4 9 − l

O − lI  = ( 2 − l ) ⋅  ( 3 − l )( 9 − l ) −16 = −l3 
   + 14l 2 −  35l + 22 

36.  Jordan matrix form and convergence 
The square matrix is diagonalizable only if it has linearly independent eigenvectors. 

Not all matrices are diagonalizable and they are called defective. However, non­
diagonalizable matrix can have a near diagonalizable matrix called Jordan normal 

form of the matrix. 

A square complex matrix A is similar to a block diagonal matrix J:
 
J = P −1AP 

li 1 
J 1   
  li A J  = =  =  
  , J i  

 1  J  p   
 li  
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For the solutions of a system of linear equations: 
x(k +1) = Ax( ) k
 

k k =1, 2,3,...
 x( ) = A x(0) , k 

Where the initial vector x(0) is known. Instead of finding x(k) for any finite k, 
the real problem is to understand the limiting solution: 

lim x k( ) ≡ lim Ak = 0, Ak → 0k→∞ k→∞ 

The above condition is only met when the spectral radius of A, r(A), is less than 
one. The spectral radius of a square matrix is the largest value of its eigenvalues. 

r(A) = max{l ,..., ln }1 

The spectral radius is closely related to the behavior of the convergence of the 
power sequence of a matrix. 
Let (v,l) be an eigenvector-eigenvalue pair of matrix A. Then: 

Akv = l kv 
k0 = ( lim A )v 

k →∞ 

k0 = ( lim A v)k →∞ 

0 = lim l kv 
k →∞ 

0 = v lim l k 

k →∞ 

for : v ≠ 0 
lim l k = 0 
k →∞ 

It is easy to see that: 
k k −1A = VJ V 

l1 
k 0 0  0 
 

 k 
0 l2 0  0  
Jk =  

        
 k 

0  0 l s−1 
 
 k 
0    0 l s  

Then : lim Ak = lim Jk = 0 
k →∞ k →∞ 

37. Jacobi method for non-homogeneous linear equations 
The Jacobi method is used to solve the system of non-homogeneous linear equations 
(see Section 23). It is an iterative method to obtain the eigenvectors (x1, x2, ..., xn) of 
a square linear system which is strictly diagonally dominant. In a strictly diagonally 
dominant matrix: 

a a , for all i ≥ ∑ii ij
 
j i 
≠ 
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For example, the system of non-homogeneous linear equations below cannot be 
solved by Jacobi method. 

 1 −2 3      −1  0
 
        
A = −3 9 1 , B = 2 , X = 0      0   
  
 2 −1 −7     3  0
         

As shown in the previous section, the square system of linear equations: 
a x  + a x ... a x + b = 0+ +11 1 12 2 1n n  1 

a x21 1 + a22 x2 + + a2n nx + b2... = 0 
a x  + a x ... a x + b = 0+ +31 1 32 2 3n n  3 

 

a x  + a x ... a x  + b = 0+ +nn 1 n2 2  nn n n 

Can be described in the matricial form: 
Ax = b 

 ba a  a    x   
  
        
  

11 12 1n 1 1 

a21 a22  a2n x2 b2         A = , x = , b = 

            

 
         a a  a x bn n1 n2 nn      n    

In the Jacobi method, the Hermetian matrix, A, is decomposed into: 

A = D N+ 

a 0  0 0 a  a 11   12 1n 
 
   
0 a22  0 a21 0  a

D =   , N =  2n  

     

    
 
   
 
 0 0  ann  an1 an2  0  

Where D is the diagonal part of A and N is the matrix containing the off-diagonal 
elements of the matrix A. 
The iteration matrix, H, is: 

−1H = D N 
−1d = D b 

For an initial vector, x(0), a linear stationary iteration is: 

x( ) k = Hx( k 1) d k 1,2,3,... −  + ∴ =  

The solution set, the column matrix x, is obtained iteratively from the matricial 
equation below: 

(k 1) −1 ( ) x + = D (b − Nx k ) 
Where x(k) is the kth iteration of x and x(k+1) is the k+1 iteration of x. 
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The formula for the solution of each element is (see Section 23): 

(k +1) 1  ( )  
x k 

i  = b 
a i − ∑a x  ij j 
, i =1, 2,3,..., n

ii  j i  ≠ 
 

That is: 

x(k +1) 1 
= (b − a x (k )  − a x(k )  − −... a x (k )  

1 1 12 2 13 3 1n n )a11 

x (k +1) 1 
2 = (b (k )  

2 − a x  21 1 − a23x (k )  − −... a x(k )  

a 3 2n n  )
22 

 

x(k +1) 1 
=  a x  (k )  (k )  (k

n (b
a n −

)  
n1 1  − an2 x2 − −... an n, −1xn−1 )

nn 

The convergence condition is when the spectral radius of the iteration matrix is 
less than one (previous section) 

r (D−1N) <1 

However, for practical reasons, the iterative process is interrupted when the 
difference between X(i) and X is small. 

lim x (k )  − x = 0 
k →∞ 

For the linear system: 
2x1 + x2 =11 
5x1 + 7x2 =13 

2 1    11
A =   ,  b =  

5 7    13

An dx(0) = (1,1), we have: 

x (k +1) = −D−1 N  x k + D b  −1

1/ 2 0  0 1D−1 =   , N =  
 0 1/ 7  5 0
 

−1 1/ 2 0   0 −1   0 −1/ 2 

−D N  =    ⋅  = 0   

 1/ 7   −5 0   − 5 / 7  0  
 

D −1 1/ 2 0  11  11 / 2
 b =    ⋅  =   
 0  1/ 7  13  13 / 7   

x (1) = −D −1 Nx (0) + D−1b 
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x(0) = [ ] 1 1  

(1) 1 (0) (1) 1 (0) x = (b − a x  ) x = (b − a x )1 1 12 2 2 2 21 1a a11 22 

x(1) = 
1 (11−1(1) ) = 5.0 x(1) = 

1 (13 − 5(1) ) =1.141 2 2 7
 

x(2) = 
1 (11−1(1.14) ) = 4.93 x(2) = 

1 (13 − 5(5.0) ) = −1.71
1 2 2 7 

x(3) = 
1 (11− −1( 1.71) ) = 6.35 x(3) = 

1 (13 − 5(4.93) ) = −1.661 2 2 7 
(32) (32) x1 = 7.1111107 x2 = −3.2222219

The final result after 32 iterations is: 

7.1111107  x =  −3.2222219  

!Programname: JACOBI
Integer :: i, j, k, n 
Real :: A(2,2), B(2) 
Real :: X0(2), X(2), tol, norm, sigma 
A(1,:)=[2,1] 
A(2,:)=[5,7] 
B=(/11,13/) 
X0=(/1,1/) 
k=0 
tol=1.0E-06 
10 do i=1,2

 sigma=0
 do j=1,2 

If (j .ne. i) sigma=sigma+A(i,j)*X0(j)
 end do 

X(i)=(B(i)-sigma)/A(i,i) 
end do 
k=k+1 
print *, k, (X(i), i=1,2) 
norm=abs(X(1)-X0(1)) 
If (abs(X(2)-X0(2)) .gt. norm) then 
norm=abs(X(2)-X0(2)) 
if (norm .lt. tol) go to 20 
end if 
do i=1,2 
X0(i)=X(i) 
end do 
go to 10 
20 stop 
end 
!THE FINAL RESULT IS: k = 32 7.1111107 –3.2222219 
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Let us solve the following non-homogeneous linear equations: 

5 −2 3 −1 0 	         
 	       A = −3 9 1 , B = 2 , X = 0 	      0   
  

  0
 2 −1 −7    3   	         

After 13 iterations (k = 13), the solution is: 
k = 13 0.186119888 0.33123031 –0.422271289 

!Programname: JACOBI2 
Integer :: i, j, k, n
 
Real, allocatable :: A(:,:)
 
Real, allocatable :: X0(:), X(:), B(:)
 
Real :: tol, norm, sigma
 
Print *, “Enter the dimension of the system of non-homogeneous equations”
 
Read *, n
 

allocate(A(n,n))
 
Allocate (X0(n))
 
Allocate (X(n))
 
Allocate (B(n))
 
Do i=1,n


 Do j=1,n 
Print *, ‘A(‘,i,’,’,j,’)= ‘ 
Read *, A(i,j) 
End do 
end do 
do i=1,n 
write (*,*) (A(i,j),j=1,n) 
end do 
print *, 
do i=1,n

 Print *, ‘B(‘,i,’)=’ 
Read *, B(i) 
end do 
write (*,*) (B(j),j=1,n) 
Print *, 
do i=1,n
 Print *, ‘X0(‘,i,’)=’ 
Read *, X0(i) 
end do 
write (*,*) (X0(j),j=1,n) 
Print *, 
k=0 
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tol=1.0E-06 
10 do i=1,n

 sigma=0
 do j=1,n 

If (j .ne. i) sigma=sigma+A(i,j)*X0(j) 
end do

 X(i)=(B(i)-sigma)/A(i,i) 
end do 
k=k+1 
print *, k, (X(i), i=1,n) 
norm=abs(X(1)-X0(1)) 
do i=1,n 
If (abs(X(i)-X0(i)) .gt. norm) then 
norm=abs(X(i)-X0(i)) 
if (norm .lt. tol) go to 20 
end if 
end do 
do i=1,n 
X0(i)=X(i) 
end do 
go to 10 
20 stop 
end 
!THE FINAL RESULT IS: k = 13 0.186119888 0.33123031 –0.422271289 

38. Jacobi method of diagonalization 
The diagonalization procedure gives the eigenvalues of a eigenvector matrix. The 
Jacobi method is one of the most used to obtain the eigenvalues. This method is based 
on the successive plane rotations of the real, symmetric matrix. This successive plane 
rotations eliminate the off-diagonal elements. In the kth step, the following relation 
exists: 

(k + ( ) ( )  k1)  k ( )  T k  A OA  = O

Where A(k) is the kth plane rotation of the matrix A and O(k) is the orthogonal 
matrix in the kth step. 
Remember from Section 33, the rotation transformation of vector V: 

( , ) → V ' x ' y ')V  x y  ( , 
α → β , β > α 

 x ' cos α −sin α    x 
=       

  y '  sin α cos α    y 
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In the step k + 1, there is one rotation (with an angle α) in the plane r,s. Then, the 
O(k+1) has the following matrix: 

1 0  0  0  0 0
 
 
0 1   0  0  0 0 
 

             
 

 
0 0   cos  α  −sin  α  0 0  r(k +1)  O = 
              

 
0 0   sin  α  cos  α  0 0  s 
 

 

             

 
 
0 0  0  0  0 1
  

  

r s 
The elements of this orthogonal matrix are: 
O = O = cos αrr ss 

O = O = −sin αrs sr 

O O  = =1, i  j r= ≠ ≠  sii jj 

O = O =1, i or ≠ orij ji  j r  s 
In order to eliminate the off-diagonal elements of the eigenvector matrix A at 

each step k+1, the angle of rotation (α) must be chosen in such a way that the r,s 
element of matrix A in the k step must equal to zero in the step k+1. Then, we apply 
the following equation: 

(k + ( ) ( )  k1)  T k  k ( )  A = O  A O
Due to the zero values of the orthonormal matrix, the above multiplication can 

be reduced to 2 x 2 matrices, O’ and A’. 
a a a  a 11 12 13 1n 
 

 
a a a  a21 rr rs 2n  
( )  A k = a a a  a 31 sr ss 3n

 
         
 

a a a  a 
 n1 n2 n3 nn  

cos α −sin α O ' =  sin α cos α 
 

T  cos α sin α 
O ' =  −sin α cos α  

a a( )   rr rs A ' k = ∴a = a  rs sra a sr ss  

 cos α sin α   a a  cos α −sin α  (k +1) rr rsA ' = ⋅ ⋅      −sin α cos α a a sin α cos α    sr ss     
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step − by − step :
 

a a  cos α − sin α  a cos α + a sin α −a sin α + a cos α 
rr rs rr rs rr rs⋅ =     a a sin α cos α a cos α + a sin α −a sin α + a cos α sr ss     sr ss sr ss  

cos α sin α a cos α + a sin α −a sin α + a cos α   rr rs rr rs 
⋅ =   

−sin α cos α  asr cos α + ass sin α −asr sinα + ass cos α  
(k +1) (k +1)a a (k +1) rr rsA ' =  (k +1) (k +1)  a a sr ss 
 

(k +1) 2
a = a cos α + a sin α cos α + a cos α sin α + a cos α sin αrr rr rs ss sr
 

(k +1) 2 2
a = −  a cos α sin α − a sin α + a cos α + a cos α sin αsr rr rs sr ss
 

(k +1) 2 2
a = −  a cos α sin α + a cos α − a sin α + a cos α sin αrs rr rs sr ss
 

(k +1) 2 2
a = a sin α − a cos α sin α − a cos α sin α + a cos αss rr rs sr ss 

Since the matrix A is symmetric, asr = ars everywhere. Then: 
a = asr rs
 

(k +1) 2
a = a cos α + 2a sin α cos α + a cos α sin αrr rr rs ss
 

(k +1) 2 2
asr = −  arr cos α sin α + ars (cos α − sin α ) + ass cos α sin α 
(k +1) 2 2a = a sin α − 2a cos α sin α + a cos αss rr rs ss 

(k+1) = arsFor the diagonalization process, the asr 
(k+1) must be zero. Then, we have: 

−a cos α sin α + a (cos 2 α − sin 2 α ) + a cos α sin α = 0rr rs ss 

This equation yields to: 
2a  2a  rs 1 −1 rstan 2 α = , α = tan 2  a − a a − arr ss  rr ss  

The calculation begins with a guess angle. It is customary to choose α in the 
range ±45. There are two algorithms to determine the element ars in the previous 
equation (to find α). Nonetheless, the main part of the code is the same for both 
cases: 

!n=dimension of the square matrices 
! Enter the matrix elements (A(i,j)) of the symmetric matrix A 
Do i=1,n

 Do j=1,n 
If (i .eq. j) O(i,j)=1 
if (i .ne. j) O(i,j)=0

 end do 
end do 
OT=transpose(O)

 alfa=0.5*atan(2*A(i,j)/(A(i,i)-A(j,j))) 
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 O(i,i)=cos(alfa)

 O(j,j)=cos(alfa)

 O(i,j)=-sin(alfa)

 O(j,i)=sin(alfa)

 OT(i,i)=cos(alfa)

 OT(j,j)=cos(alfa)
 

OT(i,j)=sin(alfa)
 OT(j,i)=-sin(alfa) 

M=matmul(A,O)
 A=matmul(OT,M)
 Do k=1,n

 Do l=1,n 
If (k .eq. l) O(k,l)=1 
if (k .ne. l) O(k,l)=0

 end do
 end do
 OT=transpose(O) 

!Start a new iteration until the final step 

The following algorithm is limited for some types of symmetrical matrices 
where the first off-diagonal element, A(1,2), has the greatest value. 

The plane passing through the element A(1,2) is chosen to rotate and then the 
elements of the matrix A(0) that corresponds to the chosen plane are inserted in the 
tangent equation above which yields the angle. Afterwards, the first orthogonal 
matrix O(1) is calculated. Then, the matrix A(1) is obtained. 

(1) T (1) (0) (1) A = O  A O  
A second rotation is done at k = 2 by choosing another plane to rotate, and the 

second orthogonal matrix is calculated in order to obtain A(1). Then, the matrix A(2) 

is obtained. 
(2) T (2) (1) (2) A = O  A O  

The iteration process stops when all off-diagonal elements of the matrix A are 
zero. As the end, for example, at the step n, the eigenvector matrix is the product of 
all orthogonal matrices. 

(1) (2) (k 1) k (n− ( ) − ( ) 1) nO = O O O O O O 

! Program name:JACOBI-EIGEN 
real, allocatable :: A(:,:), O(:,:),OT(:,:), M(:,:)
 
real :: alfa
 
integer :: i, j, k, l
 
Print *, “Enter the dimension of the symmetric matrix A”
 
Read *, n
 

Allocate(A(n,n))
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Allocate(O(n,n)) 
Allocate(OT(n,n)) 
Allocate(M(n,n)) 
Do i=1,n

 Do j=1,n
 Print *, ‘A(‘,i,’,’,j,’)= ‘ 

Read *, A(i,j)
 End do 

end do 
do i=1,n 
write (*,*) (A(i,j),j=1,n) 
end do 
print *, 
Do i=1,n

 Do j=1,n 
If (i .eq. j) O(i,j)=1 
if (i .ne. j) O(i,j)=0 
end do 
end do 
OT=transpose(O) 
do i=1,n-1 

do j=i+1,n

 alfa=0.5*atan(2*A(i,j)/(A(i,i)-A(j,j)))
 O(i,i)=cos(alfa)
 O(j,j)=cos(alfa)
 O(i,j)=-sin(alfa)
 O(j,i)=sin(alfa)
 OT(i,i)=cos(alfa)
 OT(j,j)=cos(alfa) 

OT(i,j)=sin(alfa)
 OT(j,i)=-sin(alfa) 

M=matmul(A,O)
 A=matmul(OT,M)
 Do k=1,n

 Do l=1,n 
If (k .eq. l) O(k,l)=1 
if (k .ne. l) O(k,l)=0

 end do

 end do

 OT=transpose(O)


 end do 
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end do 
do i=1,n 
write (*,*) (A(i,j),j=1,n) 
end do 
print * 
stop 
end 

For the matrix A: 

0.6532 0.2165 0.0031
 
 
A 0.2165 0.4105 0.0052=  
 
0.2165 0.031 0.2132
  

The eigenvalue matrixis: 

 0.78008908 2.72800826E − 05 −1.12739292E − 06
 
(k =3)  
A = 2.72952857E − 05 0.28378111 −7.65449426E −10  

−1.12760961E − 06 2.44833265E −10 0.21302973   

If the first off-diagonal element, A(1,2), does not have the greatest value, 
then one has to pick the off-diagonal element with the greatest value to begin the 
calculation. All the rest of the procedure is similar to that previously described. 

39. Commutators 
Matrices and operators can be elements of commutators. A commutator is defined as: 

[A B ] −, = AB BA

As already mentioned in Section 1 of this chapter, matrices do not commute, 
except for the cases discussed in the chapters involving matrix mechanics. 

When AB = BA, the matrices or operators A and B commutate. The commutator 
has the following properties or commutator’s identities: 

[A A, ] = 0 

[A B] [B A  ], = - ,  

[A  B C  , ] [ = A C  , ] [ + B C]+ , 

[A B  C  ] [ = , + A C  , ], + A B] [ 
[ , ] [ A B C  B A C  + [ ,A BC  = , ] ] 
[ , ] = A B C  [ , ] [ + , ]AB C  A C B  

[AB,CD] = A B,C D ] + ] + ,D] + C A,D B ]A,C BD CA B[ [ [ [ 
When the operators or matrices are of the same type they commutate even for 

different components. For example, the linear momentum and position operators, p 
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and r, respectively, can have two or three components for two-dimensional and three-
dimensional spaces. Then, we have the following commutator’s properties: 

 p p  x , y  = 0,[ p p  x , z ] =  0,    p , p = y z  0

[x, y  ] = 0, [x z  , ] = 0, [ y, z  ] = 0

40.  Examples 
1.  Give a literal example of a linear transformation. 
Solution: A linear transformation transforms a vector into another one which is 
obtained from an operation matrix operator, A, acting on a basis function (a vector X).  
The matrix A changes the modulus of X, but it does not change its direction. Then, X  
is an eigenvector of A. The resulting vector, Y, is the outcome of the linear operation 
of A on X, giving the equation: AX = lX, where lX = Y. The objective of the linear 
transformation is to obtain the eigenvalues ln of the operation of A on X.
A nn  ⋅ X n  = Y n  = ln  ⋅ Xn 

a 11 a 12 a 13 x 1 a x  11 1 + a12x 2 + a13x3 l1x1 

a 21 a 22 a 23 ⋅ x 2 = a x  21 1 + a22x 2 + a23x3 = l2 x2 

a 31 a 32 a 33 x 3 a x  31 1 + a32x 2 + a33x3 l3 x3 

2.  By knowing that the spin projection operators Sz, Sy and Sx are 2 x 2 square 
matrices operators that affects a measurement of the spin in the z, y, and x directions, 
respectively, yielding the two states of the spin in each of these directions. Find their 
commutative properties. 
Data: 

  0 1S x = σ x =  2 2 1 0
 

  0 −i
S y = σ y =  2 2  i 0 


  1 0  
S z = σ =  2 z 2 0 −1 

Solution: Let us find the commutative property between Sx and Sy 

1 2 0 1 0  −i 1 0 −i 0 1 
S x , S y  = S S  x y  − y x  = S 2 
     S      

1 0   −     4   i  0   4  i 0   1 0 
   

1 2  i 0  1 2 −i 0 1  i 0  −i  0 
S x , S y  =  −  =  2 

      −    4 0 −i  4  0 i  4 0 − i   0 i   

1 2 i − ( )−i  0  1 2i 0  1  i 0 
  =   =  S x , S y      2 = 

2
   4  0 − −i i    4  0 −2i  2 0 −i 

i 1 0  
S x , S y  = 2 
   =    iS

2 0 −1 z
  
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3. Demonstrate that AP = PD to AP = DP is an eigenvalue equation being P2x2 an 
inversible matrix and D2x2 a diagonal matrix.
 
Solution: 

Let us designate the matrices D and P as:
 

l1 0  v1 w1 D =   , P =   = [V W]
0 l v w 2   2 2  

Then, we have: 

AP = A V [ W] [ AV AW]=
 

v w     l 0  v l w l 
1  1 1  1 1  1 2PD =       =   = [l1V l2 W] 
2 v l 2 v2 w2    0 l   2 1  w l2 

[AV AW] [ = l1V l2 W] 
[ ] = [ ]A V W  D V W  

4. Let T be a linear transformation matrix given below. Find the three associated 
eigenvalues ln. 

 1 0 0 

T = 
 0 1 2 


 0 2 1  

Solution: The linear transformation matrix operates on the vector X to yield the ln X. 

Let : TX = ln X 

( n n  )T − l I X  = 0
 

( n n  )
Then : det T − l I = 0 
Hence : 

1 0 0 1 0 0 1− ln 0 0  
     0 1 2 − ln 0 1 0  = 0 1− ln 2      
0 2 1 0 0 1  0 2 1− ln    

1− ln 0 0 
 
 
det 0 1− ln 2 = 0 
 
 0 2 1− ln 

 

1− l  1− l 
2 − 4 = 0
( n ) ( n )  

S { − }= 1, 1,3 

 1 
 

n 
− 


l = 1 
 3   
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5. Given the matrix A below, find its conjugate transpose (A*)T or (A†). 

 3 + i 5 −2i A =  2 − 2 − −13ii i  7  
Solution: 

 3 − i 5 2i A* =  2 + 2 i 7 13i −  − +  i 
 

3 − i 2 2i 
 + 
* T  A = 5 −i( )   

 2i − +7 13i  

A A†≠ 



 

 
 

Differential Equations for 
Quantum Mechanics 4 
1. Introduction 
The differential equations are used to formulate many laws of physics and 
engineering. The most general form of an ordinary equation is a set of coupled first 
order equations. It is possible to transform a higher order differential equation into a 
set of coupled first order differential equations. 

Let us suppose the second Newton’s law of motion (F = ma), where F and a 
are vectors, of an object of mass m moving in x direction and the linear momentum, 
p = mv, where p and v are also vectors. 

d 2 x dx m  F x  = ( )  m = p t( )
dt 2 dt 

The second order differential equation of the second Newton’s law of motion 
can be converted into two first order differential equations. 

d [ p t( )] dxF x  ( )  = , p t( )  = m
dt dt 

The terms first order or second order are the degree of the differential equation 
which is given by the highest power of the highest-order derivative in the equation. 

Nonetheless, many equations in Physics are in the form of linear, inhomogeneous/ 
homogeneous second-order equations. When S(x) is zero, the equation is called 
homogeneous and when the S(x) is nonzero, the equation is called inhomogeneous. 

2d y  
2 + ( )  = ( )k x y  S x  

dx 

Where k is a real function with positive sign (oscillatory wave number) or 
negative sign (exponential growth or decay). 

The differential equations can be ordinary (ODE: ordinary differential 
equation) or partial (PDE: partial differential equation). The ordinary differential 
equations have only one independent variable and partial differential equations have 
two or more independent variables. 

One differential equation is an eigenvalue equation when the solutions satisfying 
the boundary conditions exist only for particular values of a constant wavenumber, k, 
as a set of {kn where n is an integer}. 
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2. First-order differential equation 
A first-order differential equation is linear when it has the form: 
dy ( )  = S( )+ k x y  x  
dx 

When S(x) = 0, it is called homogeneous and the equation is separable. The 
term homogenous means that every term in the equation has the variable y(x). The 
solution of the linear homogeneous first-order differential equation is given below: 

dy ( )  = 0+ k x y  
dx 
dy 

= − ( )k x y  
dx 
dy 

= − ( )k x dx 
y 

ln y = −  ( ) k x dx + c∫ 
−∫ ( )k x dx y = ae

Where a is an arbitrary constant. When a = 0, y = 0 (trivial solution). 
When S(x) ≠ 0, it is called inhomogeneous linear equation. If we take the 

function F(x): 

k x dx ∫( )  = e
( )

F x  

Which has the following characteristic: 

( )dF x 
= ( ) ( )  F  x k  x  

dx 

Since: 

k x dx  ( )  
 ∫d e  dF ( )   x , u = ∫ ( )= k x dx 

dx dx 
( )  dud e u 

du dx 
( )  d (∫ ( )d eu 

u k x dx )
= e = F ( ) ,  = ( )x  k x  

du dx 
dF ( )x 

= ( ) ( )  F  x k x  
dx 

Then, multiplying F(x) by each term of the inhomogeneous equation gives: 

dy 
= ( ) ( )  F x( )  + F x k  x y  ( ) ( )  F x S  x  

dx 
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The second term of the left side of the above equation is: 
( )dF x ( ) ( )  =F  x k x  

dx 
dF x ( )F  x k x y  ( ) ( )  = y

dx 
Then, the left side of the equation becomes: 

dy dF x ( )  dF x  + y = [ ( )  ]( )  F x y  
dx dx dx 

Hence, we have: 

d [F x y  ( )  ] = F x S  x  ( )  ( )  
dx 

And the general solution becomes: 

( )  = ( )  ( )  + cF x y  F x S x dx  ∫ 
Let us take the linear inhomogeneous equation below as example: 

dy 
− 2 y = 5 3x ∴k x  = 2e ( )  −

dx 
( )  = −2k x dx x∫ 

∫ k ( )x dx −2xF x( )  = e = e

The solution from the general solution is: 

−2 x −2 x 3x x xy = e (5 )dx c 5 e dx c 5ee e + =  + = + c∫ ∫ 
2x x 3x 2xy = e (5e + c) = 5e + ce 

In the example above, we performed indefinite integration and we obtained 
a general solution having an unknown constant c. In order to obtain a particular 
solution, we have to know the boundary conditions (or initial conditions) of the 
system, where the initial values of x and y are known. Let us use the boundary 
condition y(0) = 7 in the example above to find its particular solution. 

3x 2 xy = 5e + ce , x = 0,  y = 7 
3(0) 2(0) y = 5e + ce 5 c 7,  c = 2= + =  
3x 2xy = 5e + 2e 

There is another method to solve the first-order differential equation, that is, to 
use separable variables. The first-order differential equation with separable variables 
has the form: 

( )  + B y dy ( )  A x dx = 0 
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Let us see the example below: 
dy yln x − = 0 
dx x 

After some algebraic procedures, we have: 

dy y yln x = , dy ln x = dx 
dx x x 
1 1 1 1dy ln x = dx , dy = dx 
y x y x ln x 
1 1dy − dx = 0 
y x ln x
 

1 1

 A x( )  = −  , B(y  )  =
x ln x y 

Then, by integrating the above equation, we have the general solution: 

1 1
∫ dy − ∫ dx = 0

y x ln x
 

du 1 dx
 u = ln x , = , du = 
dx x x 

1  1 1
∫ dy − ∫ dx = 0

y  u x  
1 1

∫ dy − 
y ∫ du = 0

u 
(ln y c  + −') (ln u  + c '' ) = 0

(ln y c  + −') (ln( ln x) + c '') = 0

e (ln y c  + ') − e ( ln(ln x)+c '') = 0 
k y' − k '' ln x = 0 
y c  = ln x c k∴ = '' k '

3.  Second-order differential equation: classification 
General linear second-order differential equations have the form given below. The 
first is called inhomogeneous and the second is called homogeneous. The terms p(x), 
k(x) and S(x) are the coefficients of the equation. These terms might be constant 
or variables.  When they are constants, the solutions can be expressed in terms of 
elementary functions. 

d 2 y dy 
2 + p( )  x  + k( )  x y  = S( )x  

dx dx 
and 
d 2 y dy

+ p( )  x  + k( )  x y  = 0 
dx2 dx 
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Again, the word homogenous means that every term in the equation has the 
variable y(x). 

The second-order differential equations with constant coefficients have three 
classes: elliptical, hyperbolic and parabolic. Let us take another general second-
order differential equation: 

2 2 2 φ φ  d φ d φ d φ  d d A 2 + B + C F , ,φ, , ,... =  x y
dx dxdy dy  dx dy  

or 
Au + Bu + Cu + Du + Eu + Hu = 0xx xy yy x y 

d 2φ dφ u = ∴u = u φ F Du + Eu ∴ = ∴ =  + Huxx 2 x x ydx dx 
Where A, B, C, D, E, H are the coefficients of the second-order differential 

equation. The coefficients can be constants or functions. 

If B2–4AC > 0 Hyperbolic equation 2 real characteristics 
If B2–4AC = 0 Parabolic equation 1 real characteristic 
If B2–4AC < 0 elliptic equation no real characteristic 

For example, the Laplace’s equation is a case of elliptic second-order differential 
equation. 

∇2ϕ( ,  )  = 0x y  
∂2ϕ( ,  )  ∂2ϕ( ,  )  x y  x y

+ = 0 
∂x2 ∂y2 

A = 1, B = 0, C = 1 
02 − 4(1)(1) = −4 
x2 + y2 = 1 ⇒ ellipse 

Let us take another example: 

dϕ 2 dϕ 2 

= 12 − 2dx dy 
A = 1, B = 0, C = 1 
02 − 4(1)( 1) − = 4 
x2 − y2 = 1 ⇒ hyperbola 

4. Second-order differential equation with constant coefficients: 
general and particular solutions 

For the general second-order differential equation given below: 
2d y dy

+ a + by = 0
dx2 dx 
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The general solution is: 
y e= lx

Then, by substituting y in the former equation, we have: 

d 2

lx lx d e = le , e lx = l 2 elx


dx dx2 

l 2 e lx + ale lx + be lx = 0 

e lx (l 2 + al + b) = 0 

l = 1 (− +a  a 2 
1 2 − 4 ,b ) l = 1 (− −a  a 22 2 − 4 b )

The equation: 

(l2 + al + b)= 0 

is called characteristic equation and l1 and l2 are the roots of the characteristic 
equation. The possible solutions: 

y = e l1x 
1 , y = e l2 x

2 

occur when the discriminant a2 – 4b > 0. 
And the general solution is: 
y = c y  1 1  + c2 y  2  

y = c e  l1 x 
1 + c e  l2 x

2 

Where c1 and c2 are the arbitrary constants. 
When the discriminant a2 – 4b = 0, there is only one real root for the characteristic 

equation. 

l = 1 (− −a 0 ) = − a
2 2 

Although there is only one root, it is possible to have two solutions: 

y = e lx = e−ax 2
1 

The second solution is linearly independent of the first: 
y = xy = xe−ax 2

2 1 

The general solution is: 

y = (c −ax 2
1 + xc 2 )e

When the discriminant a2 – 4b < 0, there are two imaginary roots for the 
characteristic equation. Let us take the example: 
d 2 y dy 

2 − 2 + 2y = 0 
dx dx 
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The characteristic equation and corresponding solutions are: 
1l = (2 ± 4 8− 
2 )

l1 = 1 ,  + i  l2 = 1 − =i l *1 

y = e (1 +i x  ) (1 −i x 
1 , y 2 = e )

The general solution is: 

y = e  x ( c e  ix 
1 + c2 e

−ix )
As stated in chapter three, any complex number, Z, can be represented in Euler’s 

formula. 
Z = a + bi = re iq

Z * = a − =bi re − iq

eiq = cos q + i sin q 

Then, the general solution can be written as: 

y = ex c 1 (cos x + i sin x +  ) c2 ( cos x − i sin x)
y = e x (c 1 + c2 )cos x + i c( 1 − c2 )sin x 

y = e d  x [ 1 cos x + d2 sin x]
Let us see the case where the second-order differential equation has a real 

parameter, w2, in the equation below. Note that a = 0 since y’ = 0. 

y ''+ w 2 y = 0   

In that case, the general solution is: 

a = 0,  b = w 2 

1l  = (0 ± 0 − 4w 2 ) = ±iw
2 

l1 = iw , l2 = −iw 

y e i x   
1 =

w , y2 = e −i xw 

y = c e  i x  w + c e  −i xw 
1 2 

y = d1 cos wx d+ 2 sin wx 

If w is a constant, we have the classical harmonic oscillator as the corresponding 
differential equation. If w is a parameter to be determined, an additional condition 
has to be established in order to find the general solution.

 If we have a periodic boundary condition, e.g., at each l interval, the function y 
equals the previous value without l, in a cyclic condition. 

y  ( x + nl ) = y x  ( ) , n = 0,  ± ±1, 2, ±3... 
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Then, we have: 

y( x  + l) = c e  iw ( x+l ) + c e  −iw ( x+l )
1 2 

y( x  + l) = c e  iwxe  iwl + c e  −iwx e−iwl
1 2 

y( )  x  = c e  iwx + c e  −iwx
1 2 

If : e iwl = 1, e −iwl = 1 
then  : y x( + l)  = y x  ( )

This is the case when wl = 2pn. Then: 

2p n wn = 
l 

 2p nx   2p nx  yn = d1 cos   + d2 sin  
 l   l  

To sum up, for the general second-order differential equation given below 

d 2 y dy 
+  2 a + by  = 0 

dx dx 
Whose discriminant is: 

a2 – 4b 

We have the following chart: 

Discriminant General solution 
If a2 – 4b > 0 y = c e  l1  x + c e  l 2 x

1 2 

If a2 – 4b = 0 y = e −ax 2 (c 1 + c x2 )
If a2 – 4b < 0 y = e x (c e  ix 

1 + c2 e  −ix )
y = e d  x [ 1 cos x + d2 sin x]

Or (for b = ω2) 
y = c e  i x  w

1 + c2 e  −i xw 

y = d1 cos wx d+ 2 sin wx 

Let us take the example of a body of mass, m, attached at one extreme of a 
massless spring with constant k while the other extreme of the spring is fixed in the 
wall. This is the classical harmonic oscillator. 

F = − kx 
d 2 xF = m 2 = − kx 
dt

d 2 x k
+  x = 0
 

dt 2 m
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Let the initial velocity at the limit distance, l, be 0, as expected. The discriminant 
is a2 – 4b < 0, then, we have 

x t( ) = l sin wt + l cos wt 

In this case, we see that the parameter w in the differential equation represents 
the angular frequency. The vibrational frequency, n, is also given below. 

w 2 k 
= 

m 
k w = 
m 

w 1 k n = , n = 
2p 2p m 

The potential energy for the classical harmonic oscillator is given according to 
the following relation: 

dVF = −
dx 

F = −kx 
dV
 − = −kx , dV = kxdx 
dx 

1
∫ dV = ∫ kxdx ,  V = kx 2 + c

2 
At the equilibrium position (x = 0), where the force of the spring acting on the 

body is zero, we have V = 0. Then, we find: 

dVF = −
dx 

For : x = 0,  V = 0,  c = 0 
1V = kx 2
2 

If we take the case of the stretching vibration of a diatomic molecule. The Morse 
potential for this system is: 

= BDE ⋅ 
2 

V 1 − e−a R  ( −Re ) 
 
 

V ≈ BDE  ⋅ a 2 (R − R 2
e ) − a 3 3 


 (R − R e ) + ...
Where R is the distance between the nuclei, Re is the equilibrium distance 

(Where V = 0), a is a constant, and BDE is the bond dissociation energy. For small 
displacements, as in the ground state, the potential energy can be approximated to: 

V = a 2BDE ⋅ −(R Re )
2 
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Then, the force acting on the nuclei is: 
2d a BDE R ( − R )2 dV  e  2F = − = = −2 ( − R )a BDE R 

dR R e 

2k = 2a BDE , x = (R − Re ) , F = −kx 

Then, the stretching vibration of a molecule is type of approximate simple 
harmonic. 

5. Power-series method for second-order homogenous equation 
The power-series method can be used for first-order, second-order, or higher-order 
homogeneous differential equations. The power series represent, at least, one 
particular solution for these cases and it is represented as: 

2 3 ny(x) = a0 + a1x + a2x + a3x + ... = anx∑
∞ 

n=0 

Let us see the power-series method for the first-order differential equation below: 

dy y 0+ =
dx 

By knowing that above general formula one possible solution, then we have the result 
below. In the fifth line below we perform the power equalization (see Chapter two). 

( )  = a  x  ny x  ∑
∞ 

n 
n=0 

∞
 
n−1
y '( ) = ∑ nx na x 

n=1 

'( )x + y x  = 0y ( )  
∞ ∞
 

n−1 n
na  x  + a x  = 0∑ n ∑ n 
n=1 n=0 
∞ ∞ 

(n +1)a xn + a  x  n = 0∑ n+1 ∑ n 
n=0 n=0 
∞ 

∑[(n +1)a + n ]a xn = 0n+1
 
n=0
 

then : ( n +1)a + a = 0n+1 n 

As a consequence, the recursion formula (or recurrence relation) is: 

a 1n 1+ = − 
an n +1 

let : n = 0 
a 11 = − = −1 
a 0 +10 



1
10

1
0:

1
1

0
let : n = 1 
a 2 1 1

= − = − 
a 1 1+1 2
let : n = 2 
a 3 1 1

= − = − 
a 2 2 +1 3

And so on. Let us now express all the coefficients in terms of a0. 

a1 a2 a 3 a 


n an = 
a0 a1 a2 a n−1 a0
 

an  1   1   1   1  (−1)n


= −1× −  × −  × − × −  =
 
a0  2   3   4   n  n!
 

(−1)n


a n = a0 n!
 

∑
∞ (−1)n 
 y(x) = n a0 x

n! 
n=0 

Another solution is: 

y(x) = ce –x 

We know that: 

∑
∞ (−1)n

e −x = x
n! n 

n=0 

The last equation is the MacLaurin series (see chapter two). The constant a0 is 
arbitrary and can be obtained by knowing the boundary conditions. 

Let us now solve the following second-order differential equation from the 
power-series method: 
d y  2

2 + =y 0
dx 

Then, we see the result below where we also perform the power equalization in the 
fifth line. 

∞ 

y = ∑a  x  n
n
 

n=0
 

∞
 

y '' = ∑n n( −1) an x  n−2


n=2 

y ''+ =y 0 

∑
∞ ∞

 

 

n( n  −1)an x  n−2 + ∑a x  n

n = 0

n=2 n=0 
∞ ∞

1

1

−=
+

−=

=
+

−=+

a
a

nlet
na

a

n

n

[ ]

2
0 0

2
0

2

( 2)( 1) 0

( 2)( 1) 0

: ( 2)( 1) 0

n n
n n

n n

n
n n

n

n n

n n a x a x

n n a a x

then n n a a

+
= =

∞

+
=

+

+ + + =

+ + + =

+ + + =

∑ ∑

∑
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∑
∞

 
∞ 

(n + 2)( n +1)a xn 
n + a   x  n 
+2 ∑ n = 0

n=0 n=0
 

∑
∞
 

[ (n + 2)( n +1)a + a x]  n 
n+2 n = 0

n=0 

then : ( n + 2)( n +1)a n+2 + a n  = 0

As a consequence, the recursion formula is: 
a a n + 2 = − n 

(n  + 2)(n +1)
Then, for even values of n: 

a
a = − 0 a

 = − 0 
2  

2 2 1×
 
a 1  a  a

a4 = −  2 = −  ×−  0 
 = +  0


12 4×3  2×1 4! 
a 1 a a

a6 = −
4  = −  × 0 = − 0  

30 6× 5 4! 6! 

For the odd values of n: 
a1 a a3 = − = − 1  
6 2×3 
a3 1  a  aa5 = −  = −  ×−  1 

 = +  1
20 5× 4  2× 3  5! 
a5 1 a aa7 = −  = −  × 1 = − 1  
42 7× 6 5! 7! 

Then, we have: 

y = (a 2 4 
0 + a2x + a4x + ...)+ (a 3 5 1x + a3 x + a5x + ...)
 

 a a a   a a a 
y =  − 0 2 0 x 4 − 0 x 6  a 0  x + + ... +  x 1 3 + 1 a − x  x 5 − 1 x 7 + ... 
 2! 4! 6! 1

  3! 5! 7! 
 
 2 4 6   3 5
 x x x   x x x 7
  

y = a 0 1− + − + ... + a1 x − + − + ... 2! 4! 6!   
   3! 5! 7!  

The power series in the brackets are expansions of cos x and sin x, respectively. 
Then: 

y = a0 cos x + a1sin x 

The Fuchs’ theorem establishes that for the second-order differential equation 
with non-constant coefficients of the form: 

y' '+P(x) y'+Q(x) y = G(x) 

can have a series solution about x = a if the x = a is a regular singular point or ordinary 
point of the differential equation. An ordinary point is one where P(x), Q(x) and 
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G(x) are analytic at x = a. A regular singular point of the second-order differential 
equation is one at which the second-order differential equation can be written as 

y = ∑
∞ 

an ( x a)n s+ , a0 ≠ 0− 
n=0 

or 

y = y ln ( x a) + b x a)n r+ 

0 −	 ∑
∞ 

n ( −
 
n=0
 

For some real s or r, where y0 is the solution of the first kind. 
An ordinary point at x = x0 occurs when P(x) and Q(x) are finite there, i.e., when 

P(x) and Q(x) are analytic there. A regular singular point occurs when P(x) or Q(x) 
at x = x0 is not analytic there, but (x – x0)P(x) and (x – x0)2Q(x) are analytic at that 
point. An irregular singular point occurs when at least one of (x – x0)P(x) and (x – x0) 
Q(x) is not analytic at x = x0. 

6. Frobenius method 
The Frobenius method is used to second-order differential equations with non-
constant coefficients of the form: 

2 + ( )  ( )x y '' P x xy '+ Q x y = 0 

Where x2, p(x)x, and q(x) are non-constant coefficients and x = 0 is the regular 
singular point. 

Let us define: (i) singularity occurs at a point at which it fails to be well-behaved, 
for example, not having differentiability at this point; (ii) singular point is a point at 
which some coefficient has a singularity; (iii) regular singular point is where the 
growth of solutions is bounded by an algebraic function. 
Let us divide the above equation by x2. Then: 

P(x) Q(x)
y' '+ y'+ 2 y = 0
 
x x 

We see that this equation is undefined and will not yield solutions at x = 0 or near 
0. But, the Frobenius method enables to create a power series as a solution provided 
that xP(x) and x2Q(x) are well-behaved or analytic at x = 0 (i.e., they have power 
series solutions that converge near x = 0). If these conditions are met, then one can 
find a power series as a solution in the form: 

∞ ∞
 
r n n+r
y = x a	 x = a xn
 

n=0 n=0
 
∑ n ∑ 

Where a0 ≠ 0 and r is a real or integer constant to be determined and it is called 
the indicial parameter. In this case, the parameter r belongs to the recursion formula. 
Then, besides finding the recursion formula or recurrence (as it was done in the 
previous section), we have to determine the values of the exponent r in order to 
obtain the exact values of an. 



:

2

power equalization

n +( )( ) ( )

( )

1
0 1

0 0

1 7 1

7 3 0

n r n r
n n

n n

n r n r
n n

n n

r n r a x n r a x

n r a x a x

∞ ∞
+ +

−
= =

∞ ∞
+ +

= =

+ − + + − +

+ + − =

∑ ∑

∑ ∑
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The first step is to substitute the above power series in the differential equation 
to be solved and we get the recursion formula. After, we have to derive the indicial 
equation (that is, the equation to obtain the parameter r) by setting n = 0. Then, we 
find the value(s) of r that enable to solve the differential equation for the condition 
that a0 is non zero. Afterwards, we substitute the value(s) of r into the recursion 
formula to obtain the coefficients (a1, a2, a3,...) for each solution and we obtain 
equations of y1 and y2. Finally, we substitute y1 and y2 to obtain the general solution. 
Let us find the solution for the equation below: 

22x y  ''+ 7x ( x +1) y '− 3y = 0 

7x ( x +1) 3 y ''+ y '− y = 0
2x2 2x2 

7x ( x +1) 3P x  ( )  = 2 , Q x  2( )  = −
2x 2x 

Both xP(x) and x2Q(x) are well behaved at x0 = 0 and there will be power series 
near 0. Then, we have the following values of y, y’ and y’’: 

∞ 
n+ry = ∑a xn
 

n=0
 

∞
 
n+r−1y'= (n + r)a x∑ n 

n=0
 

∞
 
n+r −2y' '= ∑(n + r)(n + r −1)anx 

n=0 

Notice that in the equations above we do not change the lower limit of the 
summation as we did it in the power series method (last section), where n = 0, n = 1 
and n = 2 for y, y’ and y’’, respectively. In the case above, n = 0 for y, y’ and y’’ 
because of the presence of the factor xr. The value of the indicial parameter, r, is 
chosen so that the first non zero term in the expansion is a0. 
Let us substitute these equations into the differential equation. 

2 ' 7  2 + ' y = 02x y  ' + x y  ' 7xy  − 3 

2 n r  2 2 n r  1+ −  + −2x  n r+ n r  1 a x  + 7x  n r a x  +∑
∞

( )( + − ) n ∑
∞

( + ) n 
n=0 n=0 

n r+ −1 n r++7x 
∞

(n + r a x  ) − 3 
∞ 

a x  = 0∑ n ∑ n 
n=0 n=0 

x : inside 

n r  n r  1+ −  + 
n 

+ +2∑
∞ 

(n r+ )(n r  1)a  x  n + 7∑
∞ 

(n r a x  + ) + 
n=0 n=0 

n r+ n r+7 n + r a x  − 3 a x  + = 0∑
∞

( ) n ∑
∞ 

n 
n=0 n=0 



( )( ) ( )

( )

( )( ) ( )

( )

2 2

2 2 2 1

0 0

1

0 0

1

0 0

0 0

2 '' 7 ' 7 ' 3 0

2 1 7

7 3 0

:

2 1 7

7 3 0

n r n r
n n

n n

n r n r
n n

n n

n r n r
n n

n n

n r n r
n n

n n

x y x y xy y

x n r n r a x x n r a x

x n r a x a x

x inside

n r n r a x n r a x

n r a x a x

∞ ∞
+ − + −

= =

∞ ∞
+ − +

= =

∞ ∞
+ + +

= =

∞ ∞
+ +

= =

+ + − =

+ + − + + +

+ + − =

+ + − + + +

+ + − =

∑ ∑

∑ ∑

∑ ∑
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power : equalization 

∑
∞

(
∞

2 n + r )( n r+ −1 ) a x  n r+	 
n + 7 ∑(n r  + −1 )a n r+

n −1  x +
n=0	 n=1 

(n + )
 

+7 ∑
∞ 

r a x   n r+ − 3 ∑
∞

a x  n r+
n n
 = 0

n=0 n=0
 

Now, we have all the summation terms at the same power (n + r) and then let us 
find the recursion formula of an. 

2 (n r+ )	( n r   + −1 7  ) + (  n r  + ) − 3 a + 7 n r  + −1  = n ( )
a n−1 0

−7 (n r  + −1) an
 a −1
n = 

2(n r+ ) − 1    ( + ) + 3   n r   

Let us set n = 0 in order to find the value(s) of r so that a0 is non zero. Note that 
the second term with n = 0 does not appear in the equation below: 
n = 0 

∑
0 ∞
 

2 (0 + r )(0 + −r 1) a x  0+r  + 7∑(n + −r 1)a x n r+ +
0 n−1  
n=0	 n=1 

0 0
 

+7	∑(0 + r )a x   0+r − 3 ∑a x  0+r

0 0
 = 0

n=0 n=0
 

2 r r  ( −1 7  ) + r  − 3 a 0 (2r  2 
0 = ∴ + 5r − 3 ) a = 0 0

see : a0 ≠ 0 
then : 2  r 2 + 5 r  − =3 0  

The above equation is the indicial equation. The values of r are r = 1/2 and  
r = –3. Let us now find the values of an according to the values of r in the recursion 
formula. Note that the values of n below are n ≥ 1 because of the lower limit of the 
second term of the summation (see above). 

1 r = 
2 

−7 (n + 1	 1

a =	 2	 −1)	 a n −1 −7 (n − 2 ) a= n−1
n 2 (n + −1

2 ) 1   n + + ( 1 
 2 ) 3 2 (n + −)  

1 1 (n + 7
2   2 ) 
 

−7 2( n −1 ) a 
a n
−1

n = , n ≥1
2 2  n n( + 7) 

Let us find a1 and a2. 

7 21 147 a  1 = − a 0 , a 2  = −  a = a
18 44 1 792 0

And get the first solution: 

 7 147  y = a x1 2  
1 0 	1− x + x2 + ...

 18 792  
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Now, let us find a1 and a2 for r = –3. 

r = 1
2
 

− −7 (n 3 1  − )a n −1 − −7 (n 4
) a 
a n−1

n = = ∴n ≥ 1 
2(n − −3 1)   − +  −  (n 3) 3 n (2 n    7)

21 7 49 a 1 =  − a 0 ∴a 2 = − a 
5 3 1  = a

5 0

And the second solution is: 

−3  21 49y = a x  1− x + x 2  
2 0  + ...

 5 5  

The general solution is: 

y = c1y1 + c2 y2 

7.  Second-order differential equations with non-constant 
coefficients 

The second-order differential equations in previous sections have constant 
coefficients. However, many important differential equations have non-constant 
coefficients. Some of these equations are: 
Hermite equation: y ''− 2xy '+ 2my = 0 

Laguerre equation: xy '' + −(1 x) y '+ l y  = 0 

Legendre equation: (1− x2 ) y '' − 2xy ' + l (l +1) y  = 0

The solution of these expressions can be given as Maclaurin series: 

y ∑
∞ 

(x) = n anx 
n=0 

8.  The Hermite equation 
The Hermite equation appears in the one-particle quantum harmonic oscillator 
problem (See chapter fourteen). The Hermite equation is: 

y ''− 2xy '+ 2my = 0 

Where n is a non-negative integer. We solve this equation using power series 
method. 

y( )  x  = ∑
∞ 

a  x  n
n 

n=0 
∞ 

y '( x ) = ∑na n−1
n x 

n=1 
∞ 

y ''( x ) = ∑n (n −1 ) a x  n−2
n
 

n=2
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We see that in the second summation, if n starts at 0 or at 1 does not change the 
result since for n = 0 the second corresponding term is zero. 

n−1 n2xy ' 2= x a nx = 2 a nx ∑
∞ 

n ∑
∞ 

n
 
n=1 n=1
 

as : a nx n = a nx n∑
∞ 

n ∑
∞ 

n
 
n=1 n=0
 

then : 2  a nx n = 2a nx n∑
∞ 

n ∑
∞ 

n
 
n=1 n=0
 

In the expansion of the y’’, let us change n to start at zero. 

for : ( −n n 1)
 
= 2 → 2(2 − = 2
n 1) 

n = 3 3(3 1)→  − = 6 
for : ( n + 2)( n +1) 
n = 0 (0 1) → +  2)(0 + =  2
 

= 1 (1 + =  6
n → + 2)(1 1) 
then : ( −n n 1) (n 2)( n +1)= +  

n=2 n=0 

As a consequence: 
∞ ∞
 

n−2 n
y ∑ ( ∑( )( ) a x'' = n n  −1)a x  = n + 2 n +1n n+2
 
n=2 n=0
 

The expansion for the last term of the Hermite equation is: 
∞ 

2my = 2ma x n∑ n
 
n=0
 

Let us substitute these expansions in the Hermite equation: 
∞ ∞ ∞ 

n n n( )( ) a x − 2na  x  + 2ma  x  = 0∑ n + 2 n +1 n+2 ∑ n ∑ n 
n=0 n=0 n=0 
∞ 

 n + 2 n +1 a − 2na + 2ma  xn = 0∑( )( ) n n +2 n
 
n=0
 

The recurrence relation is: 

n + 2 n +1 a − 2na + 2ma = 0( )( ) n+2 n n 

2( ) − 
a = 

n m  
a , n = 0,1,2,3,4... n+2 nn +1( )+ 2 ( ) n 

If m is odd, the initial value conditions are: a0 = 0 and a1 = 1. If m is even, the 
initial value conditions are: a0 = 1 and a1 = 0. 

m → odd , a0 = 0,  a1 =1 
m → even , a0 =1, a1 = 0 
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In order to obtain the Hermite polynomials, we have to set the boundary 
conditions and the value of m. Let us begin with m = 3 

initial : 
m = 3 
y(0) = a0 = 0 
y '(0) = a1 = 1 

In this case, all even coefficients will be zero due to the relation an+2 and an in the 
recursion equation, that is, a2 is related to a0, a4 is related to a2 and so on. 

for : a0 = 0 
a = a = a = a = ... = 00 2 4 6 

For the odd coefficients, we have: 

2(1 − 3) 2 a = a = = − 3  1 2+ n=1 (2 +1)(1 +1) 3
 

2(3 − 3)
a = a 
3 

= a3 = 05  3 2+ n= (2 + 3)(1 + 3)
 
2 3
: H3 ( )  = x 
3

then n − x 

Let us now set m = 4. In this case, the initial conditions are: 
initial : 
m = 4 
y(0) = a0 = 1 
y '(0) = a1 = 0 

In this case, all odd coefficients will be zero due to the relation an+2 and an in the 
recursion equation, that is, a3 is related to a1, a5 is related to a3 and so on. 

for : a1 = 0 
a = a = a = a = ... = 01 3 5 7 

For the even coefficients, we have: 

2(0 − 4) 8 a = a 
=0 

=  = −  = −  42  0 2+ n (2 + 0)(1 + 0) 2
 

2(2 − 4)  4  4
 a = a 
n=2 

= a2 =  − (−4) = 4  2 2+ (2 + 2)(1 + 2)  12  3
 

2(4 − 4)
a = a = a = 06  4 2+ n=4 4(2 + 4)(1 + 4) 

2 4 4then : H4 ( )n = 1− 4x + x
3 
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9. The Laguerre equation 
The Laguerre equation is: 

xy '' (1 x) y '+ l y =+ −  0 

Where l is a positive integer. Some authors use another term for y: 

y = n ( )L x  

Let us use the Frobenius method to solve this equation. 
∞
 

+
l y = l a x  r n∑ n
 
n=0
 

1 + −  1− x y ' = −  x 
∞ 

r + n  a x  r n  1( ) ( ) ( n∑ ) 
n=0
 

∞
 

" = x∑(r n)(r n  1) n 
r n  2xy  +  + −  a x  + −  

n=0 

Remember that in Frobenius method, n = 0 for y, y’ and y’’ because of the 
presence of the factor xr. The value of the indicial parameter, r, is chosen so that the 
first non zero term in the expansion is a0. 
Let us insert the coefficients in the summations: 

+l y = la xr n∑
∞ 

n
 
n=0
 

r n+ −1 r n+( ) 1− x y ' =
∞

( ) r + n  a x  −
∞ 

r + n  a x  ∑ n ∑( ) n 
n=0 n=0 

xy  '' = 
∞

( )( + −  a x  r n  1∑ + r n  1) n 
+ −r n  

n=0 

And substitute in the Laguerre equation: 
∞ ∞
 

+ −  1 r n+ −  1
r n(r n) + − )a x  + + )a x  ∑ + (r n  1 n ∑(r n  n 
n=0 n=0 

r n+ r n+− (r + n  a x  ) + la x  ∑
∞ 

n ∑
∞ 

n
 
n=0 n=0
 

Let us rearrange the equation 
∞ ∞
 

r n+ −  1 r n 
 + r n  1 r n   a x  − l r n   a x  + = 0r n  + − + +  − +  ∑( )( ) ( )  n ∑ ( )  n 
n=0 n=0 

2 2 r n∑  n 
+ −  1 

∞

 2rn  +  − +  ) (r + n ( ) r n  + +  ( ) r n  a x  + 
n=0 

++ 
∞

l − +( ) r n  a x  r n  = 0∑  n 
n=0 

r n+ −  1 r n  
∞ 

r + n 2 a x  + 
∞

l r  n a x  + = 0∑( ) n ∑[ − − ] n 
n=0 n=0 



 146 Quantum Mechanics: Detailed Historical, Mathematical and Computational Approaches 

In order to obtain the recursion equation, we have to change one of the an terms 
into an–1 and equalize the powers. 

[l − −r n] a  xr n  + = [l − −r n  +1 ] a xr n  + −1  
n−1 n−1 n =0 n=1 

then : 

∑
∞

( ) ∑
∞
 

r + n 2 a x  r n  + −1  
n + [l − −r n +1] a x r n+ −1
 

n−1 = 0 
n=0 n=1
 

∑
∞

 (r + n) a  + ∑
∞
 

2 x  r n  −1	 r 2 a 1 
0 x  r − 

n = + ( r + n)2 a x  r n  + −1  
n 

n=0	 n=1 

then : 

r 2 a x  r −1 	+  ∑
∞

( + )
∞
 

r n  2 a x  r n+ −1  
0	 n + ∑[l − −r n +1 ] a x r n+ −1
  

n−1
 = 0
n=1 n=1
 

∑
∞
 

r 2 a x  r −1	 + 
0 (r + n)2 a r n  + −1 
  

n + (l − −r n  +1) a 
 n −1
 x = 0

n=1
 

Thus, the indicial equation is: 

r 2 = 0,  r1 = 0,  r2 = 0 
The recurrence relation is: 

r 2 = 0 

0 2 a x  r−1 
0 + (r + n)2 

 a n + (l − −r n +1) an −1 = 0
r = 0 
n a  2 

n + (l  − +n 1) a n−1 = 0

(n − l −1 ) a
a n−1

n = 2 , n ≥1 
n 

Let us find the values of an: 
l a 1 = − 2 a1
 0

1− l 1− l  l  l (1− l )

 a 2 = a =    

2 2 1 
 2 2  − 2 a 0  = −

 1  (2! ) 2
a0

2 − l  2 − l   l (1− l )  l (1− l )(2 − l )
 a 3  = a 

3 2 2 =   −  a 2  2 0 = − a
 3  (2! )  

 3! 2 0

  ( ) 

∏
n−1 

(k − l ) 
a = k =0

n (n !) 2 



 Differential Equations for Quantum Mechanics 147 

Thus, the solution to Laguerre equation is: 

 n−1  
 ∞ ∏(k − l )  

y = a 1+ ∑ k =0 x n  0  ( ! ) 2 
n=1 n  

 
  

The first few Laguerre polynomials are: 

L x  0 ( )  = 1
L x1( )  = 1 − x
 

L x  2 ( )  = 1− 2x + x2
 2 
L x  3 ( )  = 1− 3x + 3x 2 2 − x3 6
 

L x  ( ) = 1− 4x + 3x2 − 2x3
4 3 + x4 24


10.  The associated Laguerre equation 
The associated Laguerre equation is: 
xy "+ (a  + −1 x ) y ' + l y = 0

Some authors use k instead of a for the second index and j instead of l for the 
first index. When a = 0, the above equation reduces to the Laguerre equation. Some 
authors use a different notation for y: 

y = L a ( )  or k 
l x Lj ( )x 

The point x = 0 is a regular singular point. Then, we can use the Frobenius 
method to find the solution. 

∞ 

l y = l∑a  x  r n+
n 

n=0
 

(
∞
 

a + −1 x ) y ' = (a + −1 x)∑ ( r + n  )a x  r n  + −1 
  
n 

n=0
 

∑
∞
 

xy  " = x (r n+ )(r n  + −1) a + −  
n x  r n  2 

n=0 

By replacing these terms in the associated Laguerre equation, we have (where 
the variable x of the first term was incorporated in the summation): 

∑
∞ ∞
 

 (r + n)(r + n −1)a r+
n x n−1 + (a +1− x)∑ (r  + n)a +

n x r n−1
+
n=0 n=0 

+ l∑
∞ 

a x r+n
n = 0 

n=0 

The recurrence relation for r = 0 (see previous section for similar derivation) is: 
an+1 n − l

= 
a n (n +1 )(n + +a 1)
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The first associated Laguerre polynomials are: 
0 ( )  = L x( )L x  = 10 0 

L1
0 ( )  = 1( )  = − xx  L x  1
 
1
1( )  − +2x 
L x  = 4 
1
0 ( )  = 1L x  
0
2 ( )  = 2 ( )L x  L x  
1
2 ( ) = 3x2 −18x +18L x  
2 2L x( ) = 12x − 96x +1442 

1
2 ( ) = 6xL x  − +18 
2
0 ( )  = 2L x  

The associated Laguerre polynomials have Rodrigues’ formula: 
x −k n
 

k e x  d  − x  n k 
( )  = n (e )L x  x  +
 
n n! dx
 

Whereas the Rodrigues’ formula for the Laguerre polynomials is: 

e d n − xL x = 
x n 

( x e  )( ) 
n n! dxn
 

The associated Laguerre formula can be related to Laguerre polynomials via: 
k
 

k k d
 
n ( )  = − (  1)  Ln k xL x  + ( ) 


dxk
 

The general solution for the associated Laguerre equation is: 

0 n kk ( + )! m 
n ( )  = ∑ 

n 

( ) xL x  −1 
m=0 (n − m k  + m)! )( m! 

The associated Laguerre polynomial is not self-adjoint, but it can be made self­
adjoint by multiplying by a factor [a weighting function, w(x)]: e–xxk. 

2 k kd L x  ( )  ( )dL x  
x j 

2 + (k + − x) j + jLk
j ( )1  x = 0

dx dx 
− x k×e x  : 

2 k kd L x  ( )  ( )− x k +1 j − x k j − x k k 
2 ( + − ) 

dL x  
j x = 0e x  + k 1 x e x  + je x L  ( )

dx dx 

The self-adjoint condition of a differential equation is that in which 
the derivative of the function multiplying the first derivative equals the function 
multiplying the second derivative. In the case above, we see that: 
d − x k +1 − x k +1 − x k(e x  ) = −e x  + (k +1)e x  
dx 
d − x k +1 − x ke x  = x e x  ( ) (k + −1 )
dx 



( ) ( )

( )
( )

1
0

1 1
0

1
, 0

:

1 !
1 1

!! , :
!1

n ax
n

k v
k k

n m
k

n m

see x e dx
a

kv e dv
st st

k nkt s for n m
nst

−
+

∞
−

+ +

∞

+
=

=

⇒ =
− −

  +
  = =
 − 

∫

∫

∑
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We can see that this modified associated Laguerre equation: 
2	 k

x d L x  ( ) 	  L x  k
− 	 k +1 j d ( )

e x  	  − x k j − x k k

dx	 2 + (k + −1 x)e x + je x L  j ( )x = 0 
dx 

is self-adjoint. 
In addition, for distinct values of j, the corresponding associated Laguerre 

polynomials are orthogonal within the limits of integration (between zero and 
infinite) for j ≠ l. The orthogonality of the polynomial is an important condition for 
obtaining the normalization constant N of the wave function. 
∞
 

∫ e − x xk L k k

j ( )x L l ( )x dx = 0 

0 

L  k ( )  x p L  k
j 0 l ( )x '− Lk

l ( )  x p L  0 n ( )x ' 
∞k = 0
0 

p − x	 k +1
0 ( )  x  = e x  

Here, the function p0(x) is the coefficient of the second derivative term which is 
zero at both limits. 
The generating function of the self-adjoint associated Laguerre equation is: 

∞ exz ( z −1)
 

G( ,x z  )  = ∑ z  j kL  
  
j (x  )  =

j=0 (1− z ) k +1 

Let us evaluate the product G(x,t)G(x,s) multiplied by the weight function xke–x  
and expand the functions G(x,t) and G(x,s) in powers of t and s. 

∑
∞ ∞
 

t n m  s ∫ e − x xk L k 
n ( )  x L k


m ( )x dx 
n m  , =0 0
∞	 ∞ e xt (t −1) exs ( s−1)

∫

 

 e − x xk L k ( )  x L k ( )  x dx = e−x x	 k
 
n m ∫ dx

0	 0 (1− t ) k +1 (1 − s) k +1

∞ 
k 1 1  −x (1− st )  

⇒ ∫ x	 
(1− t ) k +1 (1− s ) k +1 exp  dx

0  (1 − t )(1 − s )   

1 1 ∞  −x (1− st )  
⇒	 k +1 k +1 ∫ x k exp  dx

(1 − t )	 (1 − s ) 0  (1 − t )( s ) 1 −  
 

x (1− st )
v = 
(1− t )(1 − s) 
(1− t )(1− s ) (1− t )(1− s) x = v , dx = dv

(1− st ) (1− st ) 
(1− t )k (1 − s)k (1− t )(1 − s ) ∞ 

⇒	 ∫ vk e −vdv
(1 − t )k +1 (1 − s )k +1 (1 − st )k (1 − st ) 0 

∞ n!



( ) ( )

( ) ( )
( )

( )( )

( ) ( )
( )

( )( )
( )

( )( )

, 0 0

( 1) ( 1)

1 1
0 0

1 1
0

1 1
0

( ) ( )

( ) ( )
1 1

11 1 exp
1 11 1

11 1 exp
1 11 1

1
1 1

1

n m x k k k
n m

n m

xt t xs s
x k k k x k

n m k k

k
k k

k
k k

t s e x L x L x dx

e ee x L x L x dx e x dx
t s

x st
x dx

t st s

x st
x dx

t st s

x st
v

t s

x

∞∞
−

=

∞ ∞ − −
− −

+ +

∞

+ +

∞

+ +

=
− −

 − −
⇒  

− −− −   

 − −
⇒  

− −− −   
−

=
− −

=

∑ ∫

∫ ∫

∫

∫

( )( )
( )

( )( )
( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )1 1

0

1 1 1
,

1 1

1 1 1 1

1 1 1 1

k k
k v

k k k

t s t s
v dx dv

st st

t s t s
v e dv

t s st st

∞
−

+ +

− − − −
=

− −

− − − −
⇒
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∞ 
n n! see : ∫ x e −axdx = 

an+1 
0 

1 ∞ 

 k −v k !
⇒  k +1 ∫ v e dv =

(1− k +1
 st ) 0 (1− st ) 

∞  
n m  k !  (k + n)! ∑ t s  

 (1 − st ) k +  = ,  1 for : n = m
n m, =0  n!  

In the Appendix it is depicted the derivation of a different type of the associated 
Laguerre equation in order to become an associated Laguerre equation. The former 
is the equation obtained from the radial wave function of the hydrogen atom (see 
chapter seventeen). 

11.  The Legendre equation 
The Legendre equation occurs in problems with axial symmetry involving the 
Laplace operator, ∇2, expressed in terms of spherical polar coordinates where the 
variable x is replaced by cos q, and –1 ≤  x ≤  1. The constant j represents a real number 
in the Legendre equation. The parameter j is a real number and any solution to this 
equation is called Legendre function. The Legendre equation can be rearranged into 
the Legendre differential where L is the Legendre operator. 

Note: Most books use parameter l instead of j (or other letter such as n). In this 
section, we opted for using j instead of l in order to avoid typographical confusion 
with number 1 (one). In the next section (associated Legendre equation), we changed 
j into l because the number of equations is much smaller. 

(1− x 2 ) y ''− 2xy '+ j ( j +1)   y = 0

d  ( 2 dy 1 − x ) + + =   j j  ( 1)   y 0
dx  dx  

d  d L = (1 − x 2 ) + j j  + ( 1)
dx  dx  

Ly = 0 

Let us check whether the Fuchs’ theorem is satisfied or not for the Legendre 
equation. Firstly, we have to change the form of the Legendre equation to that used 
in Fuchs’ theorem: 

2x j j  ( +1)y ''− y '+  y = 0
(1+ x)(1 − x) (1+ x)(1 − x) 

We see that x = 0 is a regular point of the second-order differential equation 
and that x = –1 and x = 1 are regular singular points. Then, the Legendre differential 
equation has regular singular points at –1, +1 and ∞. The solutions of interest 
correspond to the interval –1 ≤ x ≤ +1, i.e., 0 ≤ q ≤ p. The Legendre equation can be 
solved using the power-series method. 
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∑
∞ 

y( )  x  = a  x  n
n 

n=0
 

∞
 

y '( x ) = ∑na x n−1
n

n=1
 

∞ 

y ''( x ) = ∑n ( n −1 ) a n−2

n x  

n=2 

Let us substitute these expansions in the respective terms of the Legendre equation: 

∑
∞ ∞ 

2xy ' 2= x na x n−1 n
n = ∑2na n x 

n=1 n=0
 

(1 − x2 ) y '' = (1  − x 2 ) ∑
∞ 

n  ( n  −1) a x  n−2

n
 

n=2
 

( ) ∑
∞ ∞

 
 

1− x2 y '' = n (n −1 ) a x  n−2 − x 2 n (n −1) a xn−2
n ∑ n 

n=2 n=2
 

(
∞ ∞

1− x2 ) y '' = ∑n (n −1 ) a x  n−2 ( ) n

n − ∑n n −1 an x  

n=2 n=0 

power : equalize
 

n = 2 → 2(2 − =1) 2, n = 0 → (0 + 2)( 0 +1)
= 2  
n = 3 → 3(3  −1) = 6,  n = 1 → +(1 2)(1 +1) = 6
  

∞ ∞

then : ∑n( n − =1) ∑ ( n + 2)(n +1 )
 
n=2 n=0
 

∞ ∞ 

so : (1  − x 2 ) y '' = ∑ ( n + 2 )( n +1 ) a x n − n ( 1 ) 

n 2 ∑ n − n

+ an x 
n=0 n=0 

(
∞ 

1− x2 ) y '' = ∑( n + 2 )(n +1 ) an+2 − n n  ( −1 ) an  xn 

n=0 

Let us substitute the expansions in the Legendre equation. 

(1− x2 ) y ''− 2xy '+ j ( j +1 ) y = 0 
 

y = ∑
∞ ∞

a  n x  n ,  2 '  xy  = ∑2na x  n 
n 

n=0 n=0 

(
∞

1− x2 ) y '' = ∑ ( n + 2 )( n +1 ) an+2 − n n  ( −1 ) a  n
n  x 

n=0
 

∑
∞
 

( n + 2 )(n +1 ) an+2 − n n  ( −1 ) an 
n − x 

n=0 

∞  ∞ −∑2na  x  n + j ( j  +1 ) a x  n 
n ∑ n =  0

n=0 n=0  
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For every n ≥ 0, we have: 

(n + 2) n +1 a 2 − n ( ) an − 2na + j j +1 an = 0( ) n+ n −1 n ( ) 
We obtain the recurrence relation: 

( j n)( j n 1)−  + +  
a = − an+2 n( )n +1 (n + 2) 
This recurrence relation can also be written as: 

[ ( 1) j j  +1)]n n  + −  (
a = an+2 nn + 2( )+1 ( ) n 
According to recursion equation, bear in mind that: 
a2 = a0 2 , n = 0+ 

a4 = a2 2 , n = 2+ 

a = a , n = 46  4 2+ 

The even values of an are given below. 

j j  +1( ) 
a2 = − a01 2⋅
 

( )( ) ( )2 ( )( )( )
 j − 2 j + 3 j j  − 2 j +1 j + 3 
a = − a = −1 a4 2 03 4 4!⋅
 

( )n ( ) ( − 2  j 2n 2) j +1 ( ) ( j + 3  j 2n 
j j  − +  ( ) + −  1)
−1 aa2n = 02 !n( ) 

The odd values of an are: 

( )j −1 ( j + 2)
a3 = − a1⋅
 

( )− 3 ( j 
( )2 ( )−1 ( )j ( + 2 ( j
 

2 3  
j + 4) j − 3 j ) + 4)

a = − a = −1 a5 3 14 5 5!⋅
 

( )n ( )−1 ( ) ( j − 3  j − +  2n 1)( + 2)( j + 4) (  j + 2n)
j j 
n = 1a2 1+ − a1(2n +1 !) 

The general solution of the Legendre equation in the interval (–1,1) is: 
y = c y  + c y  1 1  2 2  

where: 
j j  − 2 j + 3( ) +1 ( j )( )+1 ( j )

y1 = 1− x2 + x4 −
2! 4! 

j j  − 2  j − +  2n 2 j +1 j + 3  j 2n 1 n 
∞ ( ) ( )( )( ) ( + −  ) 2y1 = 1− ∑ x
 
=1 ( ) n
n 2 !  

and 
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( j −1)( j + 2) 3 ( j − 3)( j −1)( j + 2)( j + 4)
y2 = x − x  +	 x5

3!	 5! 
∞ 

n ( j −1)( j − 3 ) ( j − 2n +1)( j + 2)( j + 4) ( j + 2n
∑

  ) 
y	 2 = x + (  −1  ) x2 1  n+

n=1 (2n +1 !) 
From the d’Alembert’s ratio test both y1 and y2 series converge if |x| < 1 and 

diverge if |x| > 1, unless j is an integer. For the constant j as an even integer, y1  
reduces to polynomial with only even powers of x and y2 diverges. For the constant 
j as an odd integer, y2 reduces to a polynomial with only odd powers of x and y1 
diverges. The general solution is then rewritten as Legendre Polynomials, Pj(x). 

y1(  x) ,  j → even 
Pj ( )  x = c j  

 y2 (  x ) ,  j → odd 

The value of cj is chosen for Pj(1) = 1. As a consequence, Pj(–1) = (–1)j. 
Let us find the expressions of y and Pj(x) for first four values of j: 

j = 0, y = 1, P x  0 ( ) = 1
j = 1, y = x , P x  1( ) = x

 j = 2,  y = 1 − 3x 2 ,  P x  1
2 ( )   = 2 (3x 2 −1 )

2j = 3, y = (3x − 5x 3 ) , P x   = 1 3
3 ( )	 2 (5x − 3x)6 

These equations are the Pj(x) Legendre polynomials. Since the Legendre 
differential equation is second-order, it will have a second solution (for each n value) 
that is not polynomial designated as Qj(x). The Qj(x) are known as the Legendre 
functions of the second kind and they are not appropriate to replace Pj(x) polynomials. 

The Legendre Polynomials can be defined as the coefficients in a formal 
expansion in powers of t of the generating function (see Chapter two) below: 

1 ∞ 

G  (  x t  ; )  =	 = ∑ P j
j (x t)  

(1 2− xt + t 2 ) j =0

When we set x = 1, we have the following generating function: 

1 1 G(1; t ) =  =  = 1 + +t t  2 + t  3 + ...  
( 2 1− t1− t ) 

where : 
G(1; t) = P  0 (1) + P1(1) t P+ (1) t 2 

2 + ... 

We see that Pj(1) = 1 for all values of j. 



( ) ( )

( ) ( )

( ) ( )

12 1

0

2 1

0

2 1

0

0

( , ) 1 2 ( )

( , ) 1 2 ( )

( , ) 1 2 ( ) 0

( , ) ( )

j
j

j

j
j

j

j
j

j

j
j

j

x t G x t xt t jP x t

x t G x t xt t jP x t

x t G x t xt t jP x t

G x t P x t

∞− −

=

∞
−

=

∞
−

=

=

− − + =

− = − +

− − − + =

=

∑

∑

∑

( ) ( )2 1

0 0
( ) 1 2 ( ) 0j j

j j
j j

x t P x t xt t jP x t

∞

∞ ∞
−

= =

− + − + − =

∑

∑ ∑
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Let us check that the Legendre polynomial is the coefficient of the series 
expansion of the generating function above. Firstly, note that: 

∂2 
j+1 jt = ( +1)tt  j j

∂t 2 

then : 
2 ∞ 

t ∂ 
2 ( P  x t j[tG  x t  ( ; ) ] = ∑ j j  +1) j ( )
 

∂t j=0
 

If the polynomials Pj(x) are the solutions of the Legendre equation, then we have: 

∞  2 ∂2 ∂  j∑(1− x ) 2 − 2x + j j  +1)Pj x t  = 0( ( ) 
j =0  ∂x ∂x  

By rewriting the above equation by using the previous equation for the term for 
j(j + 1), we have: 

G  x t  ∂ ( ; )  2 ∂2 ( ; )  ∂G  x t  ( ; )  2 [tG x t ](1− x ) − 2x + t = 0 
∂x2 ∂x ∂x2 

One can easily note that the above equation is an identity. 
The generating function can be used to obtain the recurrence formula of the 

Legendre polynomials. Let us differentiate G(x;t) with respect to t. 
−1/ 2 

G x t = (1− 2xt + t )( , )  2 

u = 1 2xt + t 2− 

( , )  G  x t  ∂ 2 x∂G  x t  ∂ ( , )  u 1 ( t − 2 )
= = − 

( − xt )3/  2  ∂t ∂u ∂t 22 1 2  + t 

∂G  x t  ( , )  x − t 
=
 

∂t 2
( − xt + t )3/ 2  
1 2  

∂ ( ; )  ∞ 
j−1G  x t  

= ∑ jPj ( )x t
 
∂t j=0
 

− ∞
x t  j−1 

− 2 3 / 2  = ∑ jPj ( )x t 
(1 2xt + t ) j=0 

Let us rearrange the above equation: 
−1/ 2 

G x t = (1− 2xt + t )( ; )  2 

− ∞ 
j−1x t  

3/ 2  = ∑ jPj ( )x t 
( − xt + t ) j=01 2  2 

−3/ 2  2 j −1( x − t )(1− 2xt + t = ∑
∞ 

jP j ( )) x t 
j =0 



( )

( )
( )( )

1/ 22

1
3 / 22 0

3 / 22 1

0

( ; ) 1 2

( )
1 2

1 2 ( )

j
j

j

j
j

j

G x t xt t

x t jP x t
xt t

x t xt t jP x t

−

∞
−

=

∞− −

=

= − +

−
=

− +

− − + =

∑
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( (
∞ 

x − t )G(  x t  , ) 1   − 2xt  + t )−1 2 = ∑ jP  j −1
j (x t  )  

j=0 

( x − )
∞ 

t G(x t  , )  = (1− 2xt  + t 2 )∑ jP  1
j (x t  )  j −

j =0 

( x t  )
∞ 

− G(x t  , )  − −(1 2x t  + t 2 )∑ jP  j (x t  )  j −1 = 0 
j =0 

∞ 

G  (x t  , )  = ∑ Pj (x t  )  j
j =0 

(
∞ 

x − t )∑
∞ 

P ( )  x t  j + − 1
j ( 1  + 2 xt  − t 2 )∑ jP  j −

j ( )  x t  = 0
j=0 j =0 

∑
∞ ∞ ∞
 

x P x t  j − j +1 
j ( ) ∑ P j ( )  x t  − ∑ jP  j ( )x t  j −1


j =0 j =0 j =0 

+ 2x∑
∞ ∞ 

jP ( )  x t j − ∑ jP ( )  x t j +1
j j = 0

j =0 j =0 

∑
∞

 ∑
∞ ∞
 

x P ( )x t  j − j +1 
j P j ( )  x t  − ∑ jP  j −1


j ( )x t  
j =0 j =0 j =0 

∞

+ 2xj  ∑
 

P j P j +1
j ( )  − j∑

∞ 

x t  j ( )  x t  = 0
j =0 j =0 

( ) ∑
∞ 

( )∑
∞ ∞
 

2 j +1 x P ( )  x t  jj −  j +1 P j 1 j −1

j ( )  x t  + − ∑ jP  j ( )x t  = 0 

j =0 j =0 j=0 

∑
∞
 

 (2 j +1) xP  j ( )  x t  j − ( j +1) P  j ( )  x t  j+1 − jP  j ( )  x t  j −1
 = 0
j =0 

By combining the coefficients of tj from the individual terms of the equation 
above, we obtain for each n the recurrence formula: 

 + (2 j 1) xP j ( )  x − jP j x ( 1 j 
−1 ( )  − j + ) P j +1 ( )x  t = 0

(2 j +1) xP j ( )  x − jP j −1 ( )  x − ( j +1) P j +1 ( )x = 0 

(2 j +1) xP j ( )x = jP j−1 ( )x + ( j +1  ) P j +1 ( )x

The equation above gives an efficient way to obtain Pj (x) from the initial values 
P0(x) = 1 and P1(x) = x. Let us rearrange the equation in terms of the Pj–1 and Pj–2 

(2 j −1) xP j −  1 ( )  x = ( j −1) Pj −2 ( )  x + jP j ( )x

(2 j −1 ) xP j −1 ( )  x − ( j −1 ) P x
Pj ( )x = j −2 ( )  

j 

Another way to express the Legendre polynomials is the form of the Rodrigues’  
formula: 

1 d j 

P ( )  
j

= 2 
j x j j ( x −1)

2 j! dx 
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The Legendre equation is self-adjoint. The Legendre polynomials are 
eigenfunctions of a particular self-adjoint operator. The coefficient of Pj(x), (1–x2), 
vanishes at the interval [–1,1]. Then, its solutions of different j will be orthogonal in 
this interval (see Chapter three). That is: 

1 

∫ Pj ( )x P k ( )  x dx = 0,  j ≠ k 
−1 

x = cos θ 
π 

∫ Pj (cos θ )P k (cos θ )sin θ θd = 0
0 

Nonetheless, the definition of Pj(x) does not guarantee they are normalized. One 
way to establish the normalization is by squaring the generating function of the Pj(x). 

1 ∞ 

G  (x t  ; )  = = ∑P (x t  )  j

(1 2− xt + t 2 ) j 
j =0 

square : 
2 

(1 )  ∞ −1 
− 2xt + t 2 = ∑P ( )  x t j 


j  

 j=0  

Let us now integrate from x = –1 to x = 1 and remember that the cross terms 
vanish due to the orthogonality. Then: 

1 dx 1

∫ = ∑
∞ 

t 
22 
j P ( )x  dx


−1 (1 2− xt + ∫t 2 ) j 
j =0
 −1 

Let us now integrate the left term of the above equation: 
1 dx
∫



 (

=
1 2− xt + t 2


− )
? 

1 

y =1 2− tx + t 2 , dy = −2tdx 

if : x = − ⇒1 y =1 2  + t + t 2 = ( ) 2 1+ t 

if : x =1 ⇒ =y 1 2  − t + 2  ( ) 2 t = 1− t 
Then : 

2 
1 dx 1 (1+t ) dy 1 1+ t 
∫

 
 = ∫ = ln 

−1  (  1 2− xt + t 2 ) 2t −
(1−t ) 2 y t 1 t 

power − series : 
1 1+ t  ∑

∞ t 2 j 

ln   = 2  t 1 − t  j =0 2 j +1 
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Let us now equalize with the second term (or right term) of the previous integral: 
∞ 2 j ∞ 1
 

2∑ t 
= ∑ t 2 j
∫ Pj ( )x 

2 

 dx 
j =0 2 j +1 j=0 −1 

then : 
1 2 
∫ P j ( )  x 

2
dx = 

−1 2 j +1 

Then, the orthonormality condition for the Legendre polynomials are: 
1 2
∫


 
 P j ( )  x P k ( )x dx = δ jk

− 1 


1 2 j +

The normalization constant (see chapter ten), Nj, is: 

2 j +1N j = 
2 

Any normalized wave function (an eigenfunction), y, has the properties: 
∞ 

∫y *
ny m d t = δnm  

−∞ 

 1 ∴ =n m ⇒ nor malization 
δnm = 

0 ∴ ≠n m  ⇒ or thogonalization 

12.  The associated Legendre equation 
The Legendre equation is a special type of the Legendre associated equation where  
m = 0. The associated Legendre equation is then a generalized version of the 
Legendre equation. 

( 2 )  m2 
1− x y '' − 2xy '+ l( l +1) −  2  y = 0

 1− x  

The associated Legendre equation has three regular singular points at x = –1, 
1 and ∞. This equation appears in the applications of the Laplace operator, ∇2, or 
the Helmholtz equation expressed in terms of spherical coordinates (not exhibiting 
symmetry about the polar axis). Likewise the Legendre equation, the variable x is the 
cosine of the polar angle in spherical coordinates and then –1 ≤ x ≤ 1. The point x = 0  
is an ordinary point and it can be obtained the solution for the associated Legendre 
equation from power series method in a similar way used to the Legendre equation. 
The associated Legendre equation can be written in the form: 

d  d   m2 
 (1− x 2 ) P x  m ( )  + l( l  +1)  −  P x  m

l   2  l ( ) = 0
dx  dx   1− x  

where : y = Pm 
l ( )x 



( )

( )( )

( ) ( )
( )( )

( ) ( )

( ) ( )

/ 2 22

/ 2 22

/ 2 1 / 2 12 2

/ 2 22

/ 2 1 / 2 12 2

/ 2 22 2 2

1 1
2

2

2 1

1 ' 1

2 1

1 ' 1

2 1

m

m

m m

m

m m

m

dz m x
du
du x
dx
dz du mx x x
du dx
d wzp mx x p m x p
dx

mx mx x x p

d wzp mx x p m x p
dx

m m x x p

−

−

− −

−

− −

−

= − −

= −

= − + −

= − − − − +

+ − + −

= − − − − +

+ − −
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or: 

( 2 )  m2 
1  − x P ''( )  x − 2xP '( )  x + l( l + −1)   P( )x = 0

 1 − x2 
 

This equation has nonzero nonsingular solutions in the interval [–1,1] only if l 
and m are integers where 0 ≤ m ≤ l. When m is even, the solution is a polynomial and 
when m = 0 and l is an integer, the solution is identical to the Legendre polynomials. 

Let us eliminate the troublesome factor 1 – x2 from the denominator by making 
the following substitution: 

P = (1 x )m / 2
− 2 p 

Hence, we differentiate P with respect to x. 

y (1 
m / 2  

= − x2 ) , u  = 1− x 2

dy m 
= (1 − x ) m / 2  −1   2

du 2 
du 

= −2x 
dx 
dy du mx (1 m / 2  1  

= − − x
− 2 ) du dx 

P ' (1 x2 ) m / 2  
= −  p '− mx (1 x

m 2 ) / 2  −1  
− p 

Let us differentiate the first part of the above equation: 

d yp ' ?= 
dx 

y ( ) m / 2  
= 1 − x2 

dy du m / 2  1  
= −mx (1−

−
 x2 ) du dx 

d yp ' (1 x ) m / 2  
p '' mx (1 m / 2  1  

= − 2  − − x
−2 ) p '

dx 

And let us differentiate the second part of the previous equation (P’): 

d wzp = ?
dx 
w = −mx 
dw 

= −m 
dx 

z ( )m / 2  −1  
= 1 −

 
 x2 



( ) / 2 12

?

1
m

d wzp
dx
w mx
dw m
dx

z x
−

=

= −

= −

= −
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dz m 1 1  
m / 2−2

= − ( − x2 ) du 2 
du 

= −2x
dx 
dz du ( mx 2x)(1 x ) m / 2

+
−2

= −  − 2 

du dx 
d wzp  ( m / 2 1  

= −mx  1− x ) − 
p '− m (1 m / 2  

− x ) −1   2 2 p +
dx 

+mx (−mx + 2x)(1 / 2−2 
− x2 )m

p 

d wzp  = −mx  (1− x )m / 2  −1   m / 2  1  
− x

− 2 p '− m (1 2 ) p +
dx 

+(2m m  − 2 ) x2 (1 − x )m / 2−22  p 

Now, let us add both terms: 

d d yp '+ wzp ( m / 2  2 x  m / 2  −1  
= 1− x ) p ''− m (1− x 

 2 ) p ' 
dx dx 

/ 2  −1   
m 1

m / 2  1  
−mx  (1− x 2 )m

p '− ( − x 
− 2 ) p + 

+( 2m m− 2 ) x 2 (1 − x2 ) m / 2−2
p

P '' ( / 2  
− x )m / 2  −1  

= 1− x )m
p ''− 2mx (1  2 2 p '+ 

+ − m (1 x 
m / 2  −1  m / 2−2

− 2 ) + (2m m  − 2 ) x 2 (1  − x2 
 ) p 

By replacing P, P’ and P’’ in the associated Legendre equation, we have: 

(1− x 2 ) p '' − 2x ( m  +1 ) p '+ [l(l  + −1) m m  ( +1)] p  = 0 

By differentiating the above equation, we obtain a similar differential equation 

−2 x p  ( ') ' + (1 − x2 )(  p ') '' − 2( m +1) p '− 2( m +1)x p  ( ') '+
+[l( l  +1) − m m  (  +1)] p ' = 0
simplification : 
(1 − x 2 )( p ') '' − 2x( m  + 2)( p ') ' + [−2( m  +1) + l(l   +1) − m m  (  +1)] p  ' = 0 
Then : 
(1 − x 2 )( p ') '' − 2x m  ( + 2)( p ') '+ [l( l  +1) − (m  + 2)( m +1) ] p ' = 0 

This means that if P(x) is a solution for m = 0 (the Legendre polynomial), then 
the differentiation of P(x) for a positive integer m combining with the equation  
y = (1 – x2)m/2  is the solution of the associated Legendre equation. Therefore, the 
general solution of the associated Legendre equation: 

( ) d mP
m m x (  1)  − x 

/ 2  
− m 2 

l ( )  = 1  

 
p x( )

dxm l 
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When m = 0, P 0 
l = Pl. The factor (–1)m is sometimes omitted. This factor is 

called Condon-Shortley phase and it is a sign convention that enables to deal with 
the momentum ladder operators. 

By using Rodrigues’  formula for P m
n , we find the solution of the associated 

Legendre equation: 
m l +m
 

m (−1) p x   ( ) = (1− x 2 )m / 2  d (x  2 −1) l
l 2 !l l dx
 l +m

−m m ( l m  − )!
p ( )x = (  −1 )  p xm 
l l ( )

( l m  + )!

Hence, the associated Legendre functions are: 

(−1)  0 d 0
 

l = 0, m  = 0 ∴ p x  0 2  0 / 2  2 0

0 ( ) = 0 (1− x ) 0 (x −1) =1

2 0! dx 
(−1) 1 d 2 

l =1, m =1,  p x  1 
1 ( ) = 1 (1 − x 2 )1/ 2 (x 2 −1) 1

2 1! dx 2

l =1, m =1, p x  1 
1 ( ) = − −(1 x 2 )1/ 2 

(−1)  0 d 1 

l =1, m = 0, p x0 2  0 / 2  2
1 ( ) = 1 (1 − x ) 1 (x −1) 1 = x

2 1! dx 
(1−1)! l =1, m = −1 , p x−1 ( ) = ( −1 ) 1  −(1− x 2 ) 1/ 2 

1  (1+1)! 
1 l =1, m = −1,  p x  −1 ( ) − x 2 )1/ 2 

1 = (1 
2 

(−1) 1 d 3 

l = 2, m =1,  p x  1 
2 ( ) =

2 2 (1− x 2 )1/ 2 (x 2 −1) 2
2! dx 3

l = 2, m =1, p x  1 
2 ( ) = −3 x (1 − x 2 )1/ 2 

l = 2, m = 2, p x  2
2 ( ) = 3(1 − x2 )

l = 2, m = 0, p x  0 
2 ( ) = 1 x 2 

2 (3 −1)

The plots of the above polynomials are shown in Fig. 4.1. The first few associated 
Legendre functions in radian unit are: 

P x  1
1 ( ) = −sin θ 

P x  1
2 ( ) = −3 cos θ θsin 

P x  2 2
2 ( ) = 3sin θ 

By using the Frobenius method, the recurrence formula for r = 0 is (see exercise 
section): 

n 2 + (2 m +1)n − l(l   +1) +m m  ( +1) a n+2 = an  
 (n +1)( n + 2)  
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Fig. 4.1: Plots of some associated Legendre polynomials. 

The recurrence formula leads to a power series that is divergent at –1 and +1. 
To avoid the divergence, the numerator in the recurrence formula must become zero 
for some non-negative integer n. We can verify that a zero numerator is obtained for  
n = l – m, a condition that is only met if l is an integer at least as large as m. Then, the 
regular solutions to the associated Legendre equation depend on the integer indices 
l and m. 
The orthogonality relation for the associated Legendre functions is: 

1 
m m 2 (l m  + ) ! = 0 ∴ =l k

∫ P xl ( )  P xk ( )  dx  = δ δ,
−1 2 1l + (l m− )! lk lk 

 = 1 ∴ ≠l k  

Where δlk is the Kronecker delta. The proof of the orthogonality relation for the 
associated Legendre functions is given below in seven steps. 

 (1)  Let k ≥ l and let us use the Rodrigues’ formula to represent the associated 
Legendre functions in the previous equation: 

 ( −1 )m 
 k1 

( )
k m+m / 2  k  

2 d 1− x  ( x 2 −1)  
  2 !  k dx k m+

 
∫

K m 
kl =  dx 

−1 ( −1 )m 

( 
l +mm / 2  2 ) d 

2  
 l 1− x l +m ( x −1)l 

 
 2 !l dx    

1 1 

∫
mm  ( )

k +m l +m
 
2  d ( k 2 )   d l 2 
Kkl = k l  +  1− x k +m x −1   2 k ! !  l  dx  dx l +m ( x −1) dx

−1    

 (2)  Let us use the integration by parts l+m times: 
1 1 

∫ uv ' dx = uv 1 − 
−1 ∫ vu 'dx

−1 −1 

( ) d k m+ 
  

u 
m k

= 1− x 

 2 2 

dxk m  + ( x −1)
d l +m

v ' 
l 

= ( x 2 
l +m −1)

dx 
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At each integration by parts, the product uv vanishes because (1 – x2) and (x2 – 1)  
in the interval [–1,1] will be zero. 

1 1 

∫ uv ' dx = uv 1 
 

−
−

1 ∫ vu 'dx 
−1 −1 

1
  d l 
(

k +m  l +

1
m d mk 

− x 2 ) ( x 2 −1) ( x 2  −1)  = 0 
 dx k +m 

 dxl +m 
 −1 

( x2 )
1 1 

1
m 

− 0
l

= ∴( x2 −1) = 0 
−1 −1 

Then, the first term of the integration by parts is zero. As a consequence, the 
integration becomes: 

( −1 ) l +m 1 l 

K ∫ ( x )
+m k +m

1
lm d  m d k 2 

kl = + 
− + (1− 2

k l  )  
dx l m x 2

2  k ! !l  dx k + m ( x −1)  dx
−1   

 (3)  By knowing that general Leibniz rule states that: 

( (n ) n
∑ )

n 
( uv = ) u  n j− v( j ) 

 
j=0  j   

 n   n! 
  = 
 j   j n! ( − j )!
We use this rule in the second part of the previous integration: 

d l +m  d k +m  
l +m (1 x 

m k 
− 2 ) 2 


k +m ( x −1)   =

dx dx  

∑
l +m  l m  +  d j l + +k 2 m− j

 − x
m k 2 ) d

=  ((1 ) (( x2 
  j dx l + +k 2m − j −1)

j =0  j  dx )
 (4)  The leftmost derivative in the sum above is non-zero only when j ≤ 2 m (recall 

that m ≤ l) and the rightmost derivative is non-zero only when k + l + 2 m – j ≤ 2k  
or when j ≥ 2 m + l – k. Since l ≥ k, these non-zero derivatives occur only when 
j = 2 m and l = k. Then, we have: 

 2ml m 2 d 2 
l + m  

1  x −1 2 1− x 
K m (

m 
= −1 ) l 

−  ( 1 )  l m  +  (
 

) ( )
dx   

kl  δkl l 2   ∫  dx 
22 (l!)  2m  −1  d 2 l 

 (1 x )l
− 2   

dx2l    

The factor (–1)l comes from switching the factor (x2 – 1)k into (1 – x2)l. 
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(5) By knowing the general expression of the binomial theorem: 

k k    − jk  k j k j− k k j( x + y) = ∑  x y  =∑  x y = 
j jj =0    j =0    

Let us now expand the term (1 – x2)k using this theorem: 

k  k k j  −− k j2 2( ) ( ) 1− x = ∑ 
k 

 ( ) −1 x
jj =0    

The only term that survives the differentiation 2k times is the x2k term, which 
after differentiation gives: 

kk    k−1  2 !k = −1 2k !( )   ( ) ( ) 
0   

Then, the integration becomes: 
l l +m 

( ) l ( ) ( ) −1 l m 1
2K = 1 δ 2 !  x− l −1 dxkl 

m 
kl 

−1
2l 2 ( ) 


2 
+ 

 ∫ ( )l 

2 ( ) l!  m  −1
 

l 1 l m)! l
+
Kkl = ( ) −1 δkl 2 ( )2 !

(
∫ 
1 

xm l ( ) 2 −1 dx 
2l ( )! ( − !2 l l m) −1 

(6) The integration of (x2 – 1)l gives: 

l 21 2l +1 
2 l 

− l 2 ( ) !
∫ ( x −1) dx = ( 1) 
−1 (2l +1 !) 
(7) Then, we have: 

2l +11 l m+ )! 2 ( ) 2 
l l!

K = ( ) − δ ( )!(
−m 1 2l ( 1) l kl kl 22l ( )! (l m  ! ( l +1 !2 l − ) 2 )
 

m 2 (l m)
+ !
K = δkl kl 2 1  (l m− )!l + 

The associated Legendre equation is used for the solution of the spherical 
harmonics for the particle in a sphere (chapter sixteen) and the angle part of the 
hydrogen atom (chapter seventeen). 

13. Partial differential equation and separation of variables 
As stated in the first section of this chapter, there are two types of differential 
equations: ordinary and partial. When a differential equation has two or more 
independent variables, then it is called partial differential equation. 
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When a partial differential can be reduced to a set of ordinary differential 
equations, the solutions of the partial differential equation are the product of the 
solutions of the ordinary equations. This is the method of separation of variables. 
Let us take the following example: 

∂f ( ,  x y  )  ∂2 f ( ,x y  )  
− t  = 0 

∂x ∂y2 

Where the function ƒ(x,y) is a product in which the dependence on x and y is 
separated. 

f  ( ,  x y  )  = X  (x Y  )  (y  )  

Let us substitute the above equation in the partial differential equation. 

∂ [ X  ( )  x Y  (y  )  ] ∂2 [ X  ( )x Y  (y  )  ]
− t  = 0 

∂x ∂y2 

Y (y) X '(x ) − tX  (x) Y ''(y ) = 0
Y ''( y) X '( x ) 

= 
Y (y )  tX ( )x 

Both sides of the above equation are equal to the same constant –l. 

X '( )  x = −l tX ( )x 
Y ''( y ) = −l Y y( ) 

The equations above are eigenequations and –l is the eigenvalue. They have the 
following general solutions: 

X ( )  x = Ae −ltx

Y x( ) = B sin ( l x) + C cos ( l x) 
f (x, y ) = ( Ae −ltx )( B sin ( l x) + C cos ( l x)) 

14.  Undimensionalization of a differential equation 
The process of turning a dimensional differential equation into a dimensionless 
differential equation has some advantages. It simplifies the equation and it 
becomes independent of the system of units used or the type of coordinates. In the 
undimensionalization, physical quantities such as mass, length and time which have 
[M], [L] and [T] dimensions, respectively, become dimensionless numbers without 
units, i.e. they acquire the unit dimension [1]. 

Let us take the equation of motion of an object launched vertically from  
the surface of earth (of radius R) with a determined initial velocity, V0, and  
initial height y = 0. 

d 2 y gR2

= −
 
dt 2 ( y + R)2
 



0
2 2

22
0

2 2

2

2 2

( 1)

( 1)

,
( 1)

R d Y
gR Vd Y

d Y
d Y
d Y

t

t
a a

t

= −
+

= −
+

= −
+

2
0 .gR V const= =
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Where t is the time and g is the gravitational acceleration. 
Let us separate the variables (i.e., the independent variables) and parameters 

(i.e., the dependent variables) of the equation. 

Variables/dimensions Parameters/dimensions 
y [L] g [L/T2] 
t [T] R [L] 

V0 [L/T] 

Let us express the time variable in terms of the parameters V0 and R in order to 
obtain the dimensionless t (dimensionless time). 

  L 
T   t tV  T  

t = = 0 ,   = [1]R R  L V0   
 
t R
t = 
V0 

Let us now undimensionalize the height, y, using the Y quantity. See below. 

y y  L   Υ =  =  , =  [1]
b R  L   

y = YR 

Then, let us put t and y in terms of their dimensionless quantities, t and Y, 
respectively in the differential equation of motion. 

d 2 ( )YR gR 2 

R 
0  2 = − 

d ( (YR + R)2

V t )
d 2 ( )YR gR 2 gR 2 gR2

2 = − = − −
d (

 =
R (YR + R) 2 ( YR) 2 + R 2 + 2YR  2 R 2 (Y +1)2

V t
0 ) 

d 2 ( )YR g
 = −  , V . 
(Y 1)2 R = const ., 0 = const 

d ( R 2 2

0 ) 
2 ) +t

(V

(V 0 ) 
2 

d Y  2 V 2 2
0 d Y

× R  2 2 =
R dt R d t 2

V 2 d Y2 g



( )

( )

( )( )
( )

0

0

2

2
0

2 2

2 2

2 2 2 2

2 2 2 2 2 2 2

2

022

2 22 2
0 0

2 2 2

( )
( )

( )
( ) ( ) 2 ( 1)

( ) , ., .
( 1)

R
V

R
V

R
V

d YR gR
YR Rd

d YR gR gR gR
YR R YR R YR R Yd

d YR g R const V const
Yd

V Vd Y d YR
R d R d

t

t

t

t t

= −
+

= − = − = −
+ + + +

= − = =
+
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V 2 2
0 d Y  g  

=
d t 2 − 

R (Y +1) 2

d Y  2 gR V 2 
0

2 = − 
dt (Y +1)2 

d Y  2 a 
= − 

1)2 , a = gR V 2 
0 = const .

dt 2 (Y +

Then, the dimensionless equation of motion becomes: 

d Y  2 a
 
2 = − 

dt (Y +1) 2


a = gR V 2 
0 , Y = y R , t = V0 t R 

15.  Numerical solutions of first-order differential equations 
In many cases of differential equations, it is possible to transform a higher order 
differential equation into a set of first order differential equations (see introduction 
section). It is also important to know the boundary conditions of this equation and the 
interval of the independent variable, e.g., variable x from 0 to 1 [0,1]. 
 (i)  The Euler’s method 
The Euler’s method is used for first order differential equation of the type: 

dy 
= f  ( ,  x y  )  

dx 
where the left side of the equation is substituted by the numerical approximation of 
a derivative. 

dy  f x  ( + h) − f x  ( )
= f '( )  x  = + O h( )

dx h 

Where O(h) is the numerical error of the equation. 
By replacing f (x+h) and f (x) into yn+1 and yn, respectively, and we consider the 

first differential equation at the point xn. 
yn+1 − yn + O h   ( )  = f (x , y )

h n n 

Which gives: 

 y = y + hf ( ,  x y ) + O(h 2n+1 n n n )

One can see that the numerical error decreases to O(h2), which is the local error. 
By taking n steps for integrating the above equation in recursive procedure, leads to 
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a higher inaccuracy (a higher global error, O(h)). To tackle this problem is needed 
small h and large number of steps in the summation procedure. 

In the Euler’s algorithm, the recursive process begins at the boundary conditions, 
for example, for x = 0 and known y0, and goes to another boundary at x1, for example, 
x = 3. The value of x and number of steps, N, is given below. By using different 
values of h, the smallest h gives the smallest Dx (the smallest interval between xn  
and xn+1), and, as a consequence, the highest number of steps. By slicing up smaller 
and smaller the intervals between xn and xn+1, and, as a consequence, the intervals 
between yn  and yn+1, it guarantees a higher precision in the numeric calculation of 
the differential equation. 

Boundary : x0 , x1 

x n = i h  * ,  i = x 0 , N  , N = x 1
 h
y0 ⇔ x0
 

y n+1 = y n + hf (x n , y n ) +  nO ( )h 2

nO h  ( 2 ) ≈ O h( )  

In this case, as the number of steps, N, increases, the error decreases. In addition, 
as the h decreases, the error decreases as well. Notice that Yn+1 is associated with  
X + h, i.e., Xn+1. 

For example, consider the differential equation and its boundary condition 
below: 
dy 

= −xy , y(0) = 1 
dx 

Whose solution is: 
dy dy

= −xdx , ∫ = −∫ xdx 
y y 

ln y = − x 2  2, y e= −x 2 2

Let us use the equation below to find the numerical solution in the interval [0,3] 
Boundary : x0 = 0, y0 = 0, x1 = 3 
xn = i h  * , i = 0, N , N  = 3 h
 

y  n+1 = y n  + h x( − ⋅n y n  )


Table 4.1 shows the Euler’s method for h = 0.5 and h = 0.05 for different values 
of Dx. The Dx gives the inverse relation with the number of steps. For h = 0.5, the 
Yn+1  reaches zero in a much shorter interval than that for h = 0.05. When the Yn+1  
reaches zero, the algorithm becomes useless for the next values of X because they 
will give only zero values for Yn+1. 



 

 Table 4.1: Euler’s method for dy/dx = –xy according to different values of h (0.5 and 0.05) and Dx. 

Xn Yn h*(–Xn*Yn) Xn+1 Yn+1 error 

h = 0.05 Δx = 1.0 

0 1 0 1.0 1 0.3935 

1.0 1.0000 –0.0500 2.0 0.9500 0.8147 

2.0 0.9500 –0.0950 3.0 0.8550 0.8439 

3.0 

0 

0.8550 –0.1283 4.0 0.7268 0.7264 

h = 0.05 Δx = 05.0 

1 0 0.50 1 0.1175 

0.50 1.0000 –0.0250 1.00 0.9750 0.3685 

1.00 0.9750 –0.0488 1.50 0.9263 0.6016 

1.50 

0 

0.9263 –0.0695 2.00 0.8568 0.7214 

h = 0.05 Δx = 0.25 

1 0 0.25 1 0.0308 

0.25 1.0000 –0.0125 0.50 0.9875 0.1050 

0.50 0.9875 –0.0247 0.75 0.9628 0.2080 

0.75 0.9628 –0.0361 1.00 0.9267 0.3202 

1.00 

0.0 

0.9267 –0.0463 1.25 0.8804 0.4225 

h = 0.5 Δx = 1.0 

1.0000 0.0000 1.0 1.0000 0.3935 

1.0 1.0000 –0.5000 2.0 0.5000 0.3647 

2.0 0.5000 –0.5000 3.0 0.0000 –0.0111 

3.0 

0 

0.0000 0.0000 4.0 0.0000 –0.0003 

h = 0.5 Δx = 0.5 

1 0 0.50 1 0.1175 

0.50 1.0000 –0.2500 1.00 0.7500 0.1435 

1.00 0.7500 –0.3750 1.50 0.3750 0.0503 

1.50 0.3750 –0.2813 2.00 0.0938 -0.0416 

2.00 

0 

0.0938 –0.0938 2.50 0.0000 -0.0439 

h = 0.5 Δx = 0.25 

1 0 0.25 1 0.0308 

0.25 1.0000 –0.1250 0.50 0.8750 –0.0075 

0.50 0.8750 –0.2188 0.75 0.6563 –0.0986 

0.75 0.6563 –0.2461 1.00 0.4102 –0.1964 

1.00 0.4102 –0.2051 1.25 0.2051 –0.2528 
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Next, we introduce the code for the Euler´s method using the previous example. 

!Program name: EULER 
!Euler’s method for differential equation dy/dx=-xy 
!The exact solution: y=exp(-x^2/2) 
!Interval X=0 to X=3 where y(0)=1 
!y(n+1)=y(n)+h*(-xy) 
!Y(n+1) <=> X+h 
program euler 
real :: x, y, h, exact, error 
integer :: i 
func(x,y)=-x*y 
h=0.1 
nstep=3./h ! 30 steps 
y=1. !y(0)=1 
do i=0,nstep

 x=i*h !It guarantees interval from 0 to 3 
y=y+h*func(x,y) 
!Y(n+1)=Y(n)+ h* f(x,y) 
exact=exp((-(x+h)**2)/2)

 error=exact-y
 print *, i, x+h, y, exact, error 

!x+h is associated with Yn+1. Then x+h = Xn+1 
!for h=0.1 y(1)=0.6281 error=0.0216 
!for h=0.1 y(3)= 0.00803 error=0.00308 
!the error decreases as x increases 
end do 
Print *, 
!smaller h and higher number of steps gives small error 
h=0.05 
!number of steps increases as h decreases 
nstep=3./h !60 steps 
y=1. !y(0)=1 
do i=0,nstep

 x=i*h !It guarantees interval from 0 to 3 
y=y+h*func(x,y) 
!Y(n+1)=sum Y(n)+ h*sum f(x,y) 
exact=exp((-(x+h)**2)/2)

 error=exact-y

 print *, i, x+h, y,exact, error
 

!for h=0.05 y(1)=0.6169 error=0.0104 
!for h=0.05 y(3)=0.0094 error=0.0016 
!the error decreases as x increases 
!the error decreases as h decreases 
end do 
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print *, 
y=1. 
h=0.1 
do i=0,10 !10 steps

 x=i
 y=y+h*func(x,y) 

!Y(n+1)=Y(n)+ h*f(x,y) 
exact=exp((-(x+h)**2)/2)

 error=exact-y
 print *, i, x+h, y, exact, error 

!for h=0.1 Y(1)=0.8999 error=-0.3529 (bad!) 
!for h=0.1 Y(3)=0.5039 error=-0.4958 (bad!) 
!the error decreases as x increases 
end do 
print *, 
y=1. 
h=0.05 
do i=0,10 !10 steps

 x=i
 y=y+h*func(x,y) 

!Y(n+1)=Y(n)+ h*f(x,y) 
exact=exp((-(x+h)**2)/2)

 error=exact-y
 print *, i, x+h, y, exact, error 

!for h=0.05 Y(1)=0.9499 error=-0.3737 (bad!) 
!for h=0.05 Y(3)=0.7267 error=-0.7172(bad!) 
!Smaller number of steps gives higher error! 
!the error decreases as x increases 
end do 
end program euler 

The Euler’s method has low-order accuracy and it demands very low value 
of h and a huge number of steps. Then, integration with higher-order accuracy is 
preferable. 
(ii) Taylor series 
The Taylor series (see Chapter Two) is one order more accurate than Euler’s method, 
but it is more useful when the function is known analytically. The Taylor series 
expansion for yn+1 around yn is: 

1 2 3y = ( + h) = y + hy ' + h y ' + (y x ' O h )n+1 n n n 2 n 

By knowing that for first differential equation, we have: 
dy y − yn+1 n( ,  ) ,  + O h  ( )  = f xn , n = f x y  ( y )
dx h 
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and: 

d y '' n = f x  ( n , y n ) , f = f x  ( n , y n )
dx 

Since f  is a two-variable function, we use partial derivative: 

df ∂f ∂f dy y '' n = = + 
dx ∂x ∂y dx 

1 2 ∂f ∂f  y 3
n+1 = yn + hf + 2 h  + f  + O( )h 

 ∂x ∂y  

Where f  and its derivatives are evaluated at (xn,yn). 
The same process of slicing up the intervals between xn and xn+1, and the 

intervals between yn and yn+1 into small deltas, by using small h, is used in Taylor 
series algorithm. 

Boundary : ,x0 y 0 , x1 

x n = i h  * ,  i = x 0 , N  , N = x 1 h

2 ∂f ∂f  y  = y 1 
n+1 n + hf x  ( ,  n y n ) + 2 h  +  f x  ( ,n y  n ) 

 ∂x ∂y  

Let us use the Taylor series algorithm for the differential equation and its 
boundary condition below (the same used in the previous section): 
dy 

= −xy  , y(0)  = 1 
dx 
!Program name: TAYLOR 
!Taylor method for differential equation dy/dx=-xy 
!The exact solution: y=exp(-x^2/2) 
!Interval X=0 to X=3 where y(0)=1 
!y(n+1)= y(n)+h*(-xy)+(h^2)/2*[-y+(x^2)*y) 
!Y(n+1) <=> X+h 
program taylor 
real :: x, y, h, exact, error 
integer :: i 
h=0.1 
nstep=3./h ! 30 steps 
y=1. !y(0)=1 
do i=0,nstep

 x=i*h !It guarantees interval from 0 to 3 
y=y+h*(-x*y)+(0.5*(h**2))*(-y+(x**2)*y)

 exact=exp((-(x+h)**2)/2) 
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error=exact-y
 print *, i, x+h, y, exact, error 

!x+h is associated with Yn+1. Then x+h = Xn+1 
!for h=0.1 y(1)=0.60526 error=0.00163 
!for h=0.1 y(3)= 0.01256 error=-0.00015 
end do 
Print *, 
h=0.05 
nstep=3./h !60 steps 
y=1. !y(0)=1 
do i=0,nstep

 x=i*h !It guarantees interval from 0 to 3 
y=y+h*(-x*y)+(0.5*(h**2))*(-y+(x**2)*y)

 exact=exp((-(x+h)**2)/2) 
error=exact-y

 print *, i, x+h, y,exact, error 
!for h=0.05 y(1)=0.60621 error=0.000317 
!for h=0.05 y(3)=0.011143 error=-0.000034 
end do 
stop 
end 

By comparing the results for h = 0.05 between Taylor and Euler methods, one ca 
see that Taylor method yields a more accurate result. 

Euler’s method for h = 0.05 
y(1) = 0.6169 error = 0.0104 
y(3) = 0.0094 error = 0.0016 

Taylor method for h =0.05 
y(1) = 0.60621 error = 0.000317 
y(3) = 0.011143 error = –0.000034 
(iii) Runge-Kutta method 
The equation for second order Runge-Kutta algorithm has local error O(h3) but global 
error (in the recursive procedure) O(h2). 

n+1 yn + hf  ( xn + 1
2 , n + 1

2 k ) + ( )y = h y  O h  3 

hf ( ,  y )k = xn n 

The fourth-order Runge-Kutta algorithm is: 

y = y + 1 (k + 2k + 2k + k ) O h5+ ( )n+1 n 6 1 2 3 4 

hf ( ,  y )k = x1 n n 

k = hf (x + 1 , 1 
2 n 2 h y n + 2 k1) 

k = hf (x + 1 , 1h y + k )3 n 2 n 2 2 

k = hf (x + ,h y + k )4 n n 3 



 

 

Differential Equations for Quantum Mechanics 173 

Next, it follows the code for the second-order and fourth-order Runge-Kutta 
method using the same example in the previous sections. One can see that the error 
from second-order for y(3) is similar to Euler’s method. On the other hand, there 
is nearly no detectable error (in single precision) when using fourth-order Runge-
Kutta method. Then, fourth-order Runge-Kutta is the best method for the numerical 
differentiation besides the fact that there is no derivative operation in its equation as 
it happens in the Taylor series method. 

!Program name: RK 
!Runge-Kutta method for differential equation dy/dx=-xy 
!The exact solution: y=exp(-x^2/2) 
!Interval X=0 to X=3 where y(0)=1 
!Y(n+1) <=> X+h 
program Runge_Kutta 
real :: x, y, h, exact, error 
Real :: k1, k2, k3, k4 
integer :: i 
f(x,y)=-x*y 
!fourth order Runge-Kutta 
h=0.05 
nstep=3./h !60 steps 
y=1. !y(0)=1 
do i=0,nstep

 x=h*i

 k1=h*f(x,y)

 k2=h*f(x+0.5*h,y+0.5*k1)

 k3=h*f(x+0.5*h,y+0.5*k2)

 k4=h*f(x+h,y+k3)
 

y=y+(1/6.*(k1+2.*k2+2.*k3+k4))
 exact=exp((-(x+h)**2)/2)
 error=exact-y
 print *, i, x+h, y,exact, error 

!for h=0.05 y(1)=0.60653 error=-0.00000 
!for h=0.05 y(3)=0.00111 error=-7.63E-08 
end do 
Print *, 
!Second order RungeKutta 
h=0.05 
nstep=3./h !60 steps 
y=1. !y(0)=1 
do i=0,nstep 
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 x=i*h !It guarantees interval from 0 to 3 
k=h*f(x,y)

 y=y+h*f(x+0.5*h,y+0.5*k) 
exact=exp((-(x+h)**2)/2)

 error=exact-y
 print *, i, x+h, y,exact, error 

!for h=0.05 y(1)=0.60137 error=--0.00515 
!for h=0.05 y(3)=0.00871 error=-0.00240 
end do 
stop 
end 

Do-it-yourself experience 
Use GNUPLOT to generate the graphs of the associated Legendre polynomials P1,0; 

P1,1; P2,0; P2,1 and P2,2.
 
Use the following statements:
 

Set title “Associated Legendre polynomials” font “,14”
 
Set xtics font “,13”
 
Set ytics font “,13”
 
Set key font “,14”
 
Set xrange [-1:1]
 
P10(x)=x
 
P11(x)= -sqrt(1-x**2)
 
P21(x)=-3*x*sqrt(1-x**2)
 
P22(x)=3*(1-x**2)
 
P20(x)=0.5*(3*x**2-1)
 
Plot P10(x), P11(x), P20(x), P21(x), P22(x)
 

Exercises: 
(1) Replace P, P’ and P’’ in the associated Legendre equation in order to obtain (see 

Section 11): 

(1− x ) p ' − 2x m  + ) p '+ ( +1) − ( +1)]2 ' ( 1 [l l  m m p  = 0 

(2) Use Frobenius’ method to obtain the recurrence formula of the associated 
Legendre equation below (see section 11), assuming the solution in the series: 

+p  a xr n= ∑
∞ 

j 
n 

The indicial equation for the associated Legendre equation has solutions for r = 1 
and r = 0. For r = 0, recurrence formula is: 

2 (2 m +1)n − l l  +1) + m m  +1)  n + ( (a = an+2 n  
 (n +1)( n + 2)  



 

 (3)  By knowing that x = cosq, find the associated Legendre functions in polar angle 
for (a) l = 1, m = 1; (b) l = 1; m = –1; (c) l = 2, m = 1. 

 (4)  Derive the polynomials of the associated Legendre functions P m
l (x) for (a) l = 2, 

m = 0; (b) l = 2; m= –1; (c) l = 2, m = 2. 
 (5)  By knowing that the Schrödinger equation of the one-particle quantum harmonic 

oscillator is: 




2 d 2 
2 2  


2  

 − 2 + 2p nm x  y ( )x = Ey ( )x
 2m dx  

And that it has two dimensional physical quantities (energy, E, and length, x), 
undimensionalize the above equation.
 
Tip: Table the unit (according to the international system of units) of the following 

physical quantities: Energy, angular frequency, length, mass and Planck’s constant.
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Absorption/Emission 
Spectroscopy and 
Spectral Lines 5
1. General overview of the network influence in quantum 

mechanics 
The history of quantum mechanics can be divided into two parts. From 1850’s to 
1900’s, Kirchhoff, Bunsen, Boltzmann, Lorentz, Planck, Einstein, Rydberg, Zeeman, 
Stark, Rayleigh, Thomson, Rutherford, among others, developed the first most 
important experiments and the first theoretical studies that led to the recognition of 
quantum states. During 1910’s and 1920’s, Bohr, Sommerfeld, Kramer, Born, Pauli, 
Heisenberg, Jordan, de Broglie, Dirac and Schrödinger developed the theoretical 
basis of the quantum mechanics. 

The Fig. 5.1 shows the most prominent scientists which developed (or helped 
to develop) the quantum mechanics and the influence network among them along 
the time. The chronology starts from the top of figure and ends at the bottom. The 
most prominent characters of quantum mechanics history are Bohr, Heisenberg, 
Schrodinger and Dirac. Bohr, Heisenberg and Schrödinger developed the old 
quantum mechanics, matrix mechanics and wave mechanics, respectively. Dirac was 
the main responsible for the amalgamation of matrix and wave mechanics. 

Fig. 5.1: Quantum mechanics network influence. 



 

 

 Fig. 5.2: Dark fixed lines from the sun according to the original work of Fraunhofer including colored 
scheme adaptation. Image from Twitter account of the HOPOS Journal in March, 10th, 2017. (see 

acknowledgment section). 
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In the next chapters we will present the most important issues of the history and 
the mathematical development of the quantum mechanics which will partly follow 
the chronology of the Fig. 5.1. 

2. The origin of the absorption/emission spectroscopy 
Joseph Fraunhofer was a great expert in making homogenous glass in order to 
obtain homogeneous light (containing a single color) for the studies in optics 
science. He also observed that the light of a flame between red and yellow did not 
decompose in the prism, producing a homogeneous light. However, he pursued for 
the homogeneous light of every color which led him to develop an optical apparatus 
for this proposition (James 1981). In addition, he invented the modern spectroscope 
and objective telescope which enabled him to determine the refractive index of 
several types of glass (Fraunhofer 1817). He also detected the dark fixed lines of 
the solar spectrum (Fig. 5.2) and from other stars, having 574 different dark fixed 
lines (James 1981). Four decades later, Kirchhoff explained that the dark fixed lines 
were the atomic absorption lines (Kirchhoff and Bunsen 1862). Likewise Fraunhofer, 
Herschel succeeded in obtaining homogeneous light and described the spectra from 
several different flames produced by salts of several metals (Herschel 1822). Talbot 
was the first to use the light for chemical analysis in 1826 whose work was reprinted 
in 1861 (Talbot 1861) in which he also obtained the line spectrum of his studied 
substances. Talbot and Herschel were the first to observe that some metals of a salt 
have a particular line spectrum, then Talbot suggested that flame spectrum could 
be used for the identification of chemical substances. In the mid 1940s, Miller and 
Daniell were the first to analyze the spectra of various gases and they also found 
differences in the line spectrum of iodine and bromine as pure substances and a new 
possibility for the chemical analysis had definitely been born (James 1981). 

In 1835, by applying the electromagnetic spark (magnetism inducing electricity) 
in which a voltaic battery is applied between two charcoal poles and a cup of 
mercury at the end of the wire, Wheatstone produced a light that when analyzed by 



 

 

 

 

 Fig. 5.3: Schematic representation of Kirchhoff and Bunsen prism spectroscope (spectra obtained from 
a prism by refraction). 
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a spectroscope from the surface of mercury have originated the line spectrum of the 
mercury (few definite lines of light separated by very wide dark intervals). He also 
obtained the line spectra of fluid volatile metals such as zinc, cadmium, bismuth, tin 
and lead by using the same electromagnetic spark equipment. His work had a reprint 
in 1861 (Wheatstone 1861). Later, he observed that the light from burning the metals 
was different from the light produced by voltaic spark, probably from the difference 
of temperature. 

By investigating the emission spectra of some hydrocarbons, Swan obtained 
identical spectral lines for these compounds and observed that the lines were caused 
by individual atoms of carbon and hydrogen (Swan 1857). In 1858, Cartmell, one of 
Bunsen’s student, observed that some substances when heated in the ‘Bunsen burner’ 
produced characteristic colors (Cartmell 1858). 

Probably inspired by Brewster’s work, Kirchhoff suggested Bunsen to use the 
light spectrum apparatus (prism spectroscope) including Bunsen burner (having low 
intrinsic luminosity and hot flame) for the chemical analysis (Fig. 5.3). Kirchhoff 
and Bunsen obtained the spectral lines of several metals and their salts and they 
concluded that within a wide range of conditions every chemical element has always 
unique spectral lines (Kirchhoff and Bunsen 1860). They also observed that the 
sodium spectral lines were similar to those from the sun (Kirchhoff and Bunsen 
1862). Kirchhoff himself had already observed that the vapors of sodium emit the 
D-lines of the solar spectrum (yellow spectrum) and that the D-lines of the candle 
light were caused by the presence of sodium (Kirchhoff 1860). Kirchhoff also stated 
that the rays at a specific wavelength and temperature have the same ratio of emissive 
power (the amount of emitted radiation from the plate) and absorptive power (the 
amount of radiation incident on the plate) knows as the Kirchhoff´s radiation law 
(Kirchhoff 1859). 

3. The prism spectroscope and the grating spectroscope 
The spectral lines can be obtained from prism spectroscope (as a result of a 
dispersion phenomenon) and from grating spectroscope (as a result of a diffraction 
phenomenon). 

The Kirchhoff spectroscope (Fig. 5.3) uses a glass prism that refracts the light 
into different wavelengths (monochromatic beams) and different angles. The index 
of refraction depends on the wavelength and, as a consequence, each wavelength has 
a specific bend angle (the angle which the light is refracted) yielding the spectrum 
of thin lines of light. This phenomenon is called dispersion of the light (a wave that 
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spreads out as it passes through a dispersive medium). Due to the nature of the prism 
(a dispersive element), the light is spread out into monochromatic beams having 
specific angle according to corresponding wavelength of the monochromatic beam. 

According to the Fig. 5.3, the telescope close to the light source (a sample in a 
Bunsen burner or a vapor lamp) has a collimating lens that aligns the thin strip of the 
light which then passes through a prism undergoing two refractions. Thereafter, the 
monochromatic beams pass through a second telescope which magnifies the final 
image. 

The grating spectroscope, on the other hand, gets monochromatic beams of the 
light from diffraction phenomenon. The diffraction spreads out the light as it passes 
through narrow, parallel slits. The diffraction gratings have a periodic structure of 
narrowly spaced slits (transmissive or reflective gratings) that diffracts the light into 
several monochromatic beams. The diffraction depends linearly on the spacing of the 
grating and the wavelength of the monochromatic beam. The diffraction grating is 
less expensive (e.g., CD and DVD having finely-spaced tracks); easier to calibrate; 
and has a higher resolution than a dispersive element such a prism. 

By supposing that the set of slits in the grating has the spacing d wider than the 
wavelength l in order to its monochromatic light to be diffracted, then each point in 
the slit scatters the light in all directions. When the same monochromatic light of the 
same wavelength l is diffracted in a slit below the former it causes constructive and 
destructive interference. The two rays will interfere constructively (producing bright 
beam) if the extra path distance (d.sin θ, where θ is the angle between the incident 
beam and the observer direction) is an integer of the wavelength. 

d sin θ = mλ 

Where m is an integer (m = 0, 1, 2, ...). The incident light made up of a spectrum of 
distinguished monochromatic waves, each single wave will have a specific θ angle 
for its brightest diffracted beam. Then, the wavelengths of each monochromatic 
light can be determined by measuring its specific angle of highest constructive 
interference. 

4. Hydrogen spectral lines, Balmer and Rydberg series 
Masson used voltaic spark with his own spectroscope to observe the emission of the 
air. Then, he replaced air by hydrogen gas and observed its emission for the first time 
(Masson 1851). Masson mentioned that the spark hydrogen emission is always dim, 
red light similar to that from thin air. Later, he observed that the hydrogen spectrum 
has four bright lines (red, two green and one blue) separated by dark bands (Masson 
1855). 

Subsequently, Angstrom reported a study of the spark spectra of hydrogen 
(besides other several elements) and depicted two spectra of the hydrogen containing 
four distinguished lines (Fig. 5.4). In his own words: “Remarkable, in the case of the 
hydrogen, are the strongly luminous and wide lines at the red end of the spectrum, 
which, moreover, besides a feeble line in the vicinity of the former, contains only two 
bright portions, one at the limit of blue and green, and the other in the extreme blue” 
(Angstrom 1855). 
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Fig. 5.4: Angstrom’s spectral lines of air, O, CO2, NO2, and H (Angstrom 1855). The Hb represents 
the luminous intensity of the different parts of the hydrogen spectrum, in an approximate manner. See 

Acknowledgement section. 

Based on the exact numbers of Angstrom’s experimental work for the hydrogen 
spectrum (whose values are 6562.10; 4860.74; 4340.1; and 4101.2), Balmer observed 
that the four lines of the hydrogen spectrum have the following relation: 9/5; 4/3; 
25/21; 9/8 to one another and they have a common factor h = 3645.6 mm/107 in the 
conversion to the corresponding wavelength. By multiplying both numerator and 
denominator of the second and fourth ratios (which does not change their results) 
gives: 9/5; 16/12; 25/21; 36/32. The numerators are 32, 42, 52 and 62, respectively, 
being represented by m2. Then, the fractions are: 

2m 
(m2 − n2 ) 

Where n = 2, for this set of ratios (for the hydrogen spectrum). This is known as the 
Balmer series (Balmer 1885). Then, the wavelengths are given by: 

 m2 
l = A , n = 2 2 2  m − n  

where A= 364.56 × 10–9. This equation has a precision to the second or first decimal 
place. 

The values of the Balmer lines (H-alfa, H-beta, H-gamma, and so on) are: 656.3 
nm, 486.1 nm, 434.0 nm, 410.2 nm, 397.0 nm and 364.6 nm. The first four are the 
visible part of the hydrogen spectrum. The Balmer lines refer to the transitions from 
the second shell of the hydrogen atom (n = 2) to the subsequent levels (m = 3, 4, 5 
and 6). See Chapter seven for more information. 
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The Balmer formula can be rewritten as: 
1  1 1  = R − 2 l  4 n  

Where R is the 4/A and it is called the Rydberg constant. 
A few years later, Rydberg himself did a comprehensive study of the emission 

spectra of chemical elements (Rydberg 1890). Rydberg expressed a more general 
formula in terms of wavenumber (or frequency), not wavelength (as Balmer did). 

R R 
n −ν = 2 2(n1 + m1 ) (n2 + m2 ) 
Where νn is the frequency of the nth member of the series, and µ denotes the spectral 
terms. When µ1 = 0, µ2 = 0, n1 = 2 (or n = 2) and n2 = (or m =) 3,4,5,… Rydberg’s 
formula reduces to Balmer’s series. Rydberg was the first to distinguish between 
sharp series (S) and diffuse series (D). Other types of series discovered later were 
principal series (P) and fundamental series (F). They form the four chief series 
(S, P, D, F). 

5. Zeeman effect and Lorentz model 
Before Zeeman, other scientists tried to obtain the influence of magnetism on the 
spectral lines of a substance. Michael Faraday demonstrated that the plane of the 
polarized light rotates when placed in a magnetic field (Faraday 1846), but he failed 
“to detect any change in the lines of the spectrum of a flame when the flame was 
acted on by a powerful magnet”, as announced by Maxwell (Arabatzis 1992). 

In his doctoral research, Zeeman studied the reflection of the polarized light on 
the magnetized surface (known as the Kerr effect). Three years after finishing his 
doctoral thesis, he managed to circumvent the experimental difficulties to analyze 
the magnetic influence on the spectral lines of the light after some fruitless early 
attempts. As Zeeman said “In consequence of my measurements of Kerr’s magneto-
optical phenomena, the thought occurred to me whether the period of the light 
emitted by a flame might be altered when the flame is acted upon by the magnetic 
force” (Zeeman 1897). 

The equipment used in Zeeman experiment was made up with Rühmkorff 
electromagnet (with magnetizing current), a Rowland grating and a Bunsen burner. 
The flame of the Bunsen heated a recipient (a tube closed at both ends of asbestos) 
containing impregnated common salt. This tube was placed horizontally between 
the poles of the electromagnet at the right angle of the magnetic force. A burner 
was placed between the poles of the electromagnet and was heated by the flame of 
the Bunsen burner. When the electromagnet was off, there were two narrow, sharp 
D-lines of the sodium spectrum. When the electromagnet was on the two D-lines 
were broadened. When replacing the Bunsen burner by a flame of oxyhydrogen, 
the D-lines became three or four times wider. The same result was obtained when 
replacing sodium by lithium salt (Arabatzis 1992). In Fig. 5.5(A), there is pictorial 
representation of a normal Zeeman effect with characteristic three lines. 



 

 

 

  Fig. 5.5: Pictorial representation of the spectral lines of: (A) the normal Zeeman effect of zinc and; 
(B) the anomalous Zeeman effect in sodium. 
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The Zeeman experiment became known as Zeeman effect—the splitting of 
the spectral lines of light (from emission spectroscopy of a determined substance) 
under the influence of a static magnetic field. The spectral lines are split into three 
components in a magnetic field: one polarized parallel to the magnetic field and 
two perpendicular to it. This triplet is called the normal Zeeman effect which could 
be observed for zinc, copper, cadmium and others. The low resolving power of 
Zeeman’s experiment did not allow him to observe duplets-triplets of sodium. He 
could only observe that the doublet of sodium (without magnetic field) was widened 
when the (weak) magnetic field was applied. 

Lorentz had been working on electrodynamics since 1892 (according to Lorentz, 
the oscillations of the charged particles in the atom were the source of light) and 
right after the discovery of the Zeeman effect, Lorentz gave its classical theoretical 
interpretation. He explained that atoms contain charged particles called ‘ions’ (later 
called electrons) harmonically bound to a center. The frequencies of their vibrations 
correspond to the frequencies of the spectral lines of the analyzed substance. When 
a magnetic field is applied, the vibrating particles will experience a Lorentz force in 
addition to the harmonic force. The Lorentz force F describes the force acting on a 
particle of charge q moving with a velocity v in an electric field E and a magnetic 
field B experiences a force: 

F = qE + qv × B 

Instead of one rotational frequency ω0 of the electrons in the absence of a 
magnetic field, three frequencies appear when the magnetic field is applied. For a 
field H applied in z-direction, the equations of motion in x-direction and y-direction 
include the applied field H along with the harmonic force (–kx and –ky): 

d 2 x 
− +

eH dy m 2 = kx 
dt c dt 

2d y eH dx m = ky − −  
dt 2 c dt
 

2
d ym = −kz 
dt 2 
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The solutions of the equations give three rotational frequencies ω0, ω1, and ω2 as 
a consequence of the splitting of the line spectra under the influence of the magnetic 
field (Kox 1997). 

It is most probable that Lorentz’s theory to elucidate the Zeeman effect was the 
basis for Planck’s theory on the thermal black body, Slater’s virtual oscillator model 
and the Heisenberg’s matrix mechanics, that is, an electron is harmonically bound 
to the nucleus of the atom, following the equation of motion of a harmonic oscillator 
according to Hooke’s law (F = –kr). 

On the other hand, the Zeeman effect was also important to reinforce the quantized 
nature of the particles under the influence of the magnetic field since its result proves 
that the splitting of the spectrum is discrete—a quantization phenomenon—and not 
a continuum. The splitting occurs by the torque of magnetic field B on the magnetic 
dipole, morbital, which is associated with the orbital angular momentum, L. 

e m orbital = − L
2me 

Where me is the electron mass. 
One year after Zeeman’s discovery, by applying a strong magnetic field, Preston 

discovered the so-called anomalous Zeeman effect (Preston 1898). He observed 
the two D lines of sodium (without B applied) were split into a quadruplet and a 
sextuplet (see Fig. 5.5(B)). 

Zeeman effect and anomalous Zeeman effect played a very important role in 
spectroscopy in the early 20th century. Paschen, Landé, Sommerfeld among others 
interpreted theoretically their experimental results and they were one of the driving 
forces to the transition from old quantum theory to the modern quantum theory. 

6.  Stark effect 
The Stark effect is similar to Zeeman effect where the applied field changes from 
magnetic to electric. Then, the Stark effect is the splitting of the spectral lines of 
light (from emission spectroscopy of a determined substance) under the influence 
of an electric field. No classical explanation could account for this effect. Bohr and 
coworkers were the first to rationalize theoretically to this phenomenon using the 
principle of correspondence (see Chapter seven). Afterwards, Schrödinger used a 
new theoretical approach to calculate the splitting of the spectral lines from the Stark 
effect (Schrödinger 1926). 

7.  Do-it-yourself activity: home-made spectroscope 
Build your own grating spectroscope. The necessary material for your home-made 
spectroscope is: shoe box, cellophane tape, toilet paper roll, CD or DVD, aluminum 
foil, two razor blades, black marker, black paint, utility knife, ruler and glue. 
 (1)  Assume that this box has a rectangular shape with four lateral parts (two smaller 

ones and two bigger ones), one bottom and one top parts. 
 (2)  Paint in black color the inner part of shoe box to improve the resolution of the 

spectroscope; 



 

 (3)  Place the CD/DVD outside the box against the edge of one smaller lateral part 
of the box and draw the inner circle of the CD/DVD in the box; 

 (4)  Place the toilet paper roll over the circle you have just drawn and trace another 
circle. There will be two concentric circles (Fig. 5.6(A)); 

 (5)  Move the tube about 1.5 cm in the direction of the other side of the box (not to 
the top neither to the bottom) and draw another circle; 

 (6)  Cut out the shape made up with the two bigger circles; 
 (7)  Place the toilet paper roll halfway through the hole you have just made at nearly 

60 degrees (see Fig. 5.6(A)); 
 (8)  Fix it with cellophane tape and seal around the tube and all lateral part of the box 

(where the tube is located) with aluminum foil to block out the light; 
 (9)  Turn the box counter-clockwise to one of its bigger lateral parts and place the 

CD/DVD farthest apart from the fixed tube at the other side. Draw another inner 
circle of the CD/DVD in the box; 

 (10)   Draw a rectangle passing by the circle having 1.5 cm wide and 5 cm tall and cut 
out this rectangle; 

 (11)  Tape both razor blades together on the box so that their sharp edges almost touch 
each other in order to make a very narrow slit in the box. If the light is dim, the 
blades are too close and if the spectrum is blurry, the blades are too far away. 

 (12)  Tape the CD/DVD inside the box opposite the razor blade slit (Fig. 5.6(B)); 
  Obs.: steps 10 and 11 can be replaced by a single step where one makes a narrow 

slit with a knife (Fig. 5.6(A)). 
 (13)  Tape the open, top part of the box and seal the whole box with aluminum tape to 

block out the light (Fig. 5.6(C)); 
 (14)  The sample spectra might be all commercial types of light sources (light bulb, 

fluorescent lamp, halogen lamp, neon lamp, metal-halide lamp, etc.) and 
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Fig. 5.6: (A) and (B) Schematic representations of the home made spectroscope; (C) photograph of the 
home-made spectroscope; (D) photograph of fluorescent light spectrum from the home made spectroscope. 
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sunlight. Figure 5.6(D) shows the spectrum from fluorescent lamp. Tip: put the 
light source close to the slit. 
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Black-body Radiation, 

Einstein and Planck’s 

Law 6
1. The black-body radiation and spectral radiance 
In the mid 19th century, it was well understood that when any object is heated it would 
gain energy and it would emit light from red to white as the temperature increased. 
This is the behavior of the cavity radiation where the radiation is trapped inside a 
cavity of the black-body material with a small pinhole such as closed cylinders made 
of porcelain and platinum (Baggott 2011). A black-body radiation is an evacuated 
box containing thermal electromagnetic radiation in thermal equilibrium with the 
walls of the box. The radiation is emitted by an idealized opaque, non-reflective body 
(in a perfectly insulated enclosure)—the black-body box. It absorbs all light outside 
(by its outside walls that isolate the black-body from external light) and it emits all 
light spectrum from its inner, heated walls (a thermal emission) through the small 
hole (Fig. 6.1). The black-body will emit radiation (having all wavelengths present 
in a continuous spectra, unlike absorption and emission spectra) through a hole small 
enough to avoid disturbance upon the equilibrium. The radiation is characterized 
by its spectral density or spectral radiance that is the energy of radiation at a given 
frequency or wavelength. 

According to Maxwell’s electromagnetism, the energy U of electromagnetic 
waves in a cavity is: 

2U = ε0 E 2 + µ B dτ)0 
1
2 ∫∫∫ ( 

Fig. 6.1: Black-body radiation modern apparatus. 
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Where E and B are the electric and magnetic field vectors, ε0 is the vacuum permittivity 
and µ0 is the vacuum permeability. The electromagnetic cavity is an empty container 
for the electromagnetic fields containing photon’s wave function inside. 

In 1860, Kirchhoff made a theoretical study for designing the black-body 
experiment and its related laws. The black-body material consisted of two black 
screens S1 and S2 containing openings 1 and 2, respectively, whose dimensions are 
infinitely small compared to their separation distance and a body C with a black 
covering whose S1 forms one of its walls (Fig. 6.2). 

Kirchhoff stated that: “all bodies emit rays, the quality and intensity of which 
depend on the nature and temperature of the bodies themselves.” He proposed the 
experiment with the black-body material where its nature does not influence on the 
nature of the emitted radiation and its temperature is kept constant due to the covering 
impermeable to heat (like a perfectly reflecting surface). Since the temperature of the 
body is constant, the intensity of the incident rays (which are entirely absorbed) 
is equal to that of the emitted rays. Kirchhoff coined the term ‘black body’ as 
“infinitely small thicknesses, completely absorbs all incident rays, and neither reflect 
nor transmit any” which was used to investigate the radiating power of the bodies 
(Kirchhoff 1860). For every value of frequency n there is a relation below: 

En = J (n ,q )
An 

Where Ev is the radiating power of the body (the amount of energy emitted by the 
body in the frequency v from S1 to S2), Av is the power of absorption of the body 
for the frequency v (from rays coming from S2 to S1), and J is the radiating power 
emitted by the black-body material (the recipient C in Fig. 6.2). The magnitudes of 
A and E depend only on the temperature θ and frequency v. This ratio is independent 
of the nature of the body. 

Kirchhoff stated: “A body placed within a covering whose temperature is the 
same as its own, is unaffected by radiation, and must therefore absorb as many rays 
as it emits. Hence, it has long been concluded that, at the same temperature, the 
ratio between the radiating and absorbing powers of all bodies is the same—it being, 
however, assumed that bodies only emit rays of one kind” (Kirchhoff 1860). 

Rayleigh (John William Strutt—discoverer of argon element along with William 
Ramsay) used the term “complete radiation” to describe “the radiation from an 
ideally black body, which according to Stewart and Kirchhoff is a definite function 
of the absolute temperature, θ, and the wave-length, λ” in the expression θ5ϕ(θλ)dλ, 
where ϕ is an arbitrary function of the single variable θλ (Rayleigh 1898, 1900). 

In 1879, based on the measurements of physicists Dulong and Petit (Petit and 
Dulong 1819), Stefan stated empirically that the total energy density (the energy 

Fig. 6.2: Kirchhoff’s designing of the black-body material. 
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radiated per unit surface area) from a black-body (or the radiated power density in 
Wm–2), integrated over all frequencies, is proportional to the fourth power of the 
temperature: 

∞ 

E = Q (n ,T ) =σT 4∫ 
0 

Where σ = 5.66 × 10–8 Wm–2K–4 (Stefan 1879). 
However, Stefan’s equation is not true for all situations. Boltzmann, a Stefan’s 

former student, derived theoretically Stefan’s equation. He applied the second law 
of thermodynamics to the radiation by treating it as a gas whose pressure was the 
radiation pressure of the electromagnetic theory and he obtained a general equation 
which became known as Stefan-Boltzmann law (Boltzmann 1884). Boltzmann used 
the electromagnetic theory of Maxwell for a black-body where 

 c J (n ,q ) =  r(n ,q )
 8π  

In the above equation, r(n, q) is the energy density per unit volume for the 
frequency n. The energy density is the amount of energy stored per unit volume. 
Then, Boltzmann found (Pais 1979): 

( )  = V ∫ ( ,  )  n = σVT 4E q  r n q  d 

Where V is the volume of the cavity. 
In a general form of the Stefan-Boltzmann law, the total thermal energy radiated 

by an object is given by 

E = A T 4εσ 

Where A is the surface area of the object and ε is the emissivity (which is a unit for 
a black body). 

In 1893, Wilhelm Wien developed the relationship between maximum 
wavelength of the black-body radiation and the absolute temperature, T, of the black­
body radiation: 
T lmax = b 

where b is a constant (Wien’s constant, b = 2897.77 µm.K). This relationship shows 
that each radiation curve will peak at different wavelength (Wien 1893), known as 
Wien’s displacement law. 

In his paper entitled “on the energy distribution in the emission spectrum of a 
black-body”, Wein was the first to propose the law of the distribution of the radiant 
energy (or spectral radiance), r, which was generally accepted at that time (Wien 
1896). 

C − 
c
 

e ql
 r = l 5l 

Where C and c are constants, and rl is the spectral radiance. The above equation is 
known as Wien’s energy distribution law. 
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One year later, by using detection in near-infrared range, Paschen proved the 
correctness of Wien’s law (Pais 1979). However, three years later, when using a 
detector for larger extent of wavelength, Wien’s law lost its experimental support 
(see next section). 

Rayleigh developed the law of distribution of the radiant energy (or spectral 
radiance) in the expression 

ql −4dl 

which belongs to the Rayleigh-Jeans expression (Rayleigh 1900, Jeans 1905a). In 
1900, before Planck’s law, Rayleigh applied Maxwell-Boltzmann partition energy to 
develop the relation: 

r = cn 2T 

Where c is a constant which Einstein later discovered yielding the equation of the 
spectral distribution, the energy per unit volume in a frequency n (Pais 1979): 

8πn 2 R( , ) = 3 Tr n q  
c N 

Jeans stated that: “The law of radiation from a perfect radiation is of the form 
λ–4 Tf (λT)dλ so that Stefan’s law and Wien’s displacement law are accurately obeyed 
by the radiation from this ideal radiator” (Jeans 1905b). 

For a perpendicular radiated energy, the radiated power per unit wavelength, 
Bl(T), i.e., the spectral radiance, is given by: 

2π ckT ( )  =B Tl l 4 

Where k is the Boltzmann constant and Bl(T) is the Rayleigh-Jeans’ energy 
distribution law. See in the next chapter the Rayleigh-Einstein-Jeans law. 

The above equation is known as Rayleigh-Jeans law as a function of the 
wavelength. It produces good agreement in the low frequency (large wavelength) 
limit, but for high frequencies leads to the ultraviolet catastrophe. 

2. The black-body experiment 
There was a long period (of 40 years) from Kirchhoff theorem and the proper 
experiment on the black-body radiation due to the difficulty in building a perfect 
black-body and a proper device to detect the radiation to a large extent of the 
wavelength. 

The black-body emits a light spectrum whose spectral radiance is dependent upon 
the temperature. The spectral radiance is the radiance (radiant flux emitted, reflected, 
transmitted or received by a given surface, per unit solid angle, in steradian unit, 
per unit projected area) of a surface per unit wavelength (or frequency). The unit of 
spectral radiance is watt per steradian per square meter, per meter (W.sr–1.m–2.m–1). At 
room temperature, the black-body emits only infrared radiation. As the temperature 
increases, the black-body starts to emit visible light changing its color from red to 
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blue. When it is white, it is emitting ultraviolet radiation. At each temperature, there 
is a distinguished energy distribution among different wave lengths. 

The Fig. 6.3(A) and (B) depict the spectral radiance obtained from the author’s 
own data using Planck’s law. At each temperature, there is a specific spectral radiance 
curve. As the temperature increases, the maximum intensity increases and the 
wavelength of the maximum radiance, lmax, tends to decrease. At lower temperatures 
(from 500 to 1000 K in Fig. 6.3(A)), the range of the higher radiance (105 to 109 W 
sr–1m–2µm–1) oscillates from 1500 to 8000 nm. At higher temperatures (from 3000 
to 5000 K in Fig. 6.3(B)), the range of higher radiance (109 to 1013 W sr–1m–2µm–1) 
oscillates from 250 to 2000 nm. Then, at higher temperatures, the material emits 
visible light (380–740 nm). 

The experimental investigations of the black-body by Lummer, Pringsheim, 
Rubens and Kurlbaum at Physikalisch-Technische Reichsanstalt laboratory in Berlin 
led to the full spectrum of the cavity radiation since they detected the radiation in far 
infrared (Pais 1979). Their results confirmed that the energy distribution law in the 
normal spectrum from Wien (Wien 1896) was valid only for short wavelengths and 
low temperatures. As to long wavelengths only the Rayleigh-Jeans curve adequately 
described it (Fig. 6.4). Planck communicated this experimental finding in his second 
1900 paper (Planck 1900a). 

Fig. 6.3: Spectral radiance versus wavelength at (A) 500 to 1000 K and (B) 3000 to 5000 K from the 
author’s own data. 
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Fig. 6.4: Spectral radiance at 3000 K from (a) Planck’s law and Rayleigh-Jeans’ law and (b) Planck’s law 
and Wien´s law from author’s own data. 

Important to add that it was Planck who included fundamental constants to the 
Wein’s distribution law: 

2hc2 −
hc 

e l qE = k 

l5 

3. Boltzmann and Planck’s law 
Before Planck began to work with black-body radiation he had devoted his career to 
the study of the second law of classical thermodynamics. In the study of the black­
body radiation, he tried to find the basis for his idea of irreversibility for conservative 
system of the electromagnetic radiation in an enclosure with reflecting walls 
interacting with a collection of charged harmonic oscillators (a model to represent 
the experiment of the black box radiation). In another words, Planck aimed to prove 
the apparently irreversible alteration of the form of an electromagnetic wave from 
incident plane wave to outgoing spherical wave which approached the equilibrium 
state according to the second law of thermodynamics—the entropy increases 
monotonically in time (Planck 1897). The harmonic oscillators were chosen because 
of its realistic model of matter and Kirchhoff’s assertion that the equilibrium radiation 
distribution was independent of the system with which the radiation interacted. 

A harmonic oscillator is a system that is displaced from its equilibrium position 
experiencing a restoring force proportional to its displacement having sinusoidal 
oscillations about the equilibrium point. Simple mechanics examples are pendulums 
and masses connected to springs. The light has two sinusoidal oscillating fields 
(electric and magnetic fields) and it is a two-coupled harmonic oscillators. In Section 
4 of the Chapter four we presented the solution for the classical harmonic oscillator. 
As we observed in Chapter five, it is probable that the Lorentz’s theory (an electron is 
harmonically bound to the nucleus of the atom, following the equation of motion of 
a harmonic oscillator) used to elucidate the Zeeman effect was the basis for Planck’s 
theory on the thermal black body. 
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Important to add that in the Section 6 of this chapter we will see another model 
to represent the black body radiation based on the equipartition law establishing that 
the energy of the “ether” is in equilibrium with that of the matter. 

Planck tried to obtain a suitable relationship between the energy and the entropy 
of the oscillator where he devised the equation (Planck 1899): 

u u S = − ln 
βn aen 

a = αc3 8π = 6.885×10−27 erg sec 
β = 0.4818×10−10 sec K 

Where a and β are constants obtained numerically by Planck (the same used in Wien 
distribution law), e is the base of the natural logarithms and u is the energy. Planck 
discussed his result saying that: “I believe that it must therefore be concluded that the 
definition given for the entropy of radiation, and also the Wien distribution law for 
radiation that goes with it, are necessary consequences of applying the principle of 
entropy increase to the electromagnetic theory of radiation” (Klein 1966). 

Consider the equation of motion  of a linear oscillator with a mass m and charge 
e interacting with a monochromatic periodic electric field of frequency ω whose 
energy is: 

e2F  2 1E = 
2m 4 π n( − )2

  ω  + γ 2

Where F/2 is the electric field energy density (Planck 1900b). Let F/2 be: 

F 4 πr (ω  , T d) ω 
= 

2 3 
Integrating over ω, we have: 

4πe2 r ω( ,T d) ω
U = 

3m ∫ 4 π n( − 2
  ω) + γ 2

Since γ is very small, the maximum response of the oscillator occurs when ω 
= n. Extending the integration from –∞ to +∞, we have the spectral distribution 
equation related to the average energy U(n,T): 

8r n( ,T ) πn 2 

= 3 U (n ,T )
c 

This average energy could be determined from dependence of the entropy S of 
the oscillator on its energy S(U). The spectral radiance (or distribution) r(n,T) can 
be obtained from U(n,T). Planck integrated the equation T(U)dS = dU to obtain the 
entropy of the linear oscillator: 

 U   U   U U S k  = 1+ ln 1 + −    ln 
 hn    hn   hn hn  



 

∂ S α 
= −

∂ε 2   U (β + U )

The integration of the above equation yield

1 ∂S  α   β +U  
= =   ln  ∂ β
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In an outstanding work of Boltzmann in 1884, he proved that Clausius entropy 
is equivalent to the statistical entropy (so-called permutability measure, Ω) times a 
constant at thermal equilibrium (Boltzmann 1877). 

dQ 2 
∫ = Ω

T 3 

Besides the Wien’s law, the Boltzmann’s work on the entropy had a great 
influence on Planck’s investigation of the spectral radiance. Important to mention 
that so far, Planck had neglected and criticized Boltzmann’s statistical entropy but he 
had not found other way except for accepting Boltzmann’s advice on the importance 
of the statistical entropy to produce a monotonic approach to equilibrium (Klein 
1966). He tried to solve the problem of the equilibrium between matter and radiation 
without success for six years. Then, in an act of desperation, Planck calculated the 
thermodynamic probability of a state in which a certain energy was shared among the 
many oscillators of the same frequency.

 Planck chose the inverse of the second derivative of the entropy, S, of the 
oscillator coupled with the field with respect to its energy, U. He found that a deep 
connection between entropy and energy was the pathway to find the expression for 
the spectrum radiance (Planck 1900c). 

∂2 S α 
= −

∂U 2 U 

Planck observed that the energy distribution law is according to the entropy of a 
linear resonator (device that produces waves of specific frequencies) which interacts 
with the radiation as a function of the vibrational energy U and stated that Wien’s 
law follows the above equation where entropy is a function of (U/n), where n is the 
frequency of the resonator (Planck 1900c). 

After the experimental results showing that Wien’s law failed to predict 
spectrum radiance for long wavelengths, Planck constructed an arbitrary expression 
to satisfy thermodynamic and electromagnetic theories from Wien’s thermodynamic 
derivation (Planck 1900c), to yield the expression below which could encompass all 
experimental observations (Planck 1900a). 

2 

s (Barraca 2005): 

T U    U  

This equation, according to Planck, “lead to S as a logarithmic function of U— 
which is suggested from probability considerations—and which moreover for small 
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values of U reduces to Wien´s expression” (Planck 1900a). Henceforth, Planck 
obtained the spectral radiance formula, r, with two constants C and c: 

C) l −5 

r l( ,T = 
e c lT −1 

Later, Planck proposed that the entropy of the total amount of identical 
resonators (oscillators), in the same stationary radiation field, SN, is proportional to 
the logarithm of its probability W and an arbitrary additive constant (Planck 1901). 
Consider a large number N of linear oscillators having frequency n. 

( N −1 + P )!W = 
P N! ( −1 !)

SN = k log W + const . 
SN = NS 
UN = NU 
Where W is the number of P indistinguishable energy elements which can be 
distributed over N distinguishable oscillators; S is the average entropy of a single 
resonator; the total entropy SN depends on the disorder with which the total energy 
UN  is distributed among the individual resonators; and U is the constant energy of a 
single resonator (Planck 1901). UN is made up out of finite energy elements ε: 

UN = Pε 

Planck added that for finding probability W so that N resonators have the 
vibrational energy UN, is necessary to interpret it not as continuous quantity, but as 
discrete quantities composed of finite equal parts having energy element ε, where  
UN = Pε and P is an integral number. 

Planck used the Boltzmann’s idea to obtain the distribution of the P energy 
elements among the N resonators. By inserting W equation in SN = klnW, using P/N 
= U/ε, SN = NS and applying the Stirling approximation he obtained the equation: 

 U   U   U U SN = kN 1+  ln 1 +  −    ln 
 ε   ε   ε ε 
 

 U   U   U U 
S k  = 1+   ln 1 +   − ln 
 ε   ε   ε ε  

By examining the Wien’s displacement law in the form of Thiesen´s work about 
the dependence of entropy of the resonator on its energy {ρ(ν,θ) = ν3f(ν/θ)}, Planck 
obtained the entropy as a function of U/ν, where n is the frequency of the resonator. 

In a comparison among the previous equations of the entropy he found the 
expression that gives birth to the quantum theory: 

ε = hν 
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And the spectral radiance in terms of frequency: 

8 π nh 3 1 2h n 3 1 r n( , T ) = n q  or r n( ,T ) = 
c3 e h k  −1 c2 e h kn q − 1 

Where h and k are universal constants calculated by Planck with the aid of some 
available measurements: 

h = 6.55 ⋅10 −27 erg .sec 
k = 1.346 ⋅10 −16 erg / deg 

In terms of wavelength instead of frequency, the spectral radiance becomes: 

8πch 1 2πc2 1r l( , T ) = or r l( ,T ) = 
l 5 e hc k lq −1 l 5 e hc k lq −1 

Although the success of Planck’s discovery, the constant h still lacked fundamental 
significance until 1905, according to Jeans (Pais 1979). In 1906, Einstein gave the 
correct quantum definition to the Planck’s law: “The energy of Planck oscillator can 
only take on values which are integral multiples of hn; in emission and absorption 
the energy of a Planck oscillator changes by jumps which are multiples of hn”  
(Pais 1979). 

Twelve years after his famous paper, Planck postulated that Planck’s constant, 
h, was the smallest phase space cell for the oscillators in the black-body radiation 
(Planck 1912). Similar result was reached by Sommerfeld in 1916 (see Chapter 
seven). 

∫∫ dqdp = h

Where q and p are the coordinate and momentum of a one-dimensional harmonic 
oscillator. 

4.  Planck’s pathway from classical towards statistical 
thermodynamics 

Before Planck’s law in 1901, there was a debate between the continuous energy/ 
matter model and the statistical-mechanical model (composed of discrete matter 
and energy—an atomist view). Until early 1900, Planck opposed the atomist and 
probabilistic views in physics. Planck chose the cavity radiation to prove its classical 
view of the thermodynamics since it seemed to have no connection with atoms and 
molecules. Important to add that his doctoral thesis was on the second law of the 
classical thermodynamics—in which the entropy of a gas always increases until its 
equilibrium (Baggott 2011). 

Boltzmann, the most prominent developer of the statistical mechanics, stated 
that the maximum entropy is related to the highest number of possible permutations 
according to the total energy of the gas. Boltzmann parceled up the continuous 
energy into ‘energy elements’, nε (n = 1,2,3…), so that he could count the number 
of molecules having each energy element in order to obtain the number of different 
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possible permutations. Boltzmann’s work played a decisive role in Planck´s law and 
the development of the quantum mechanics. 

In 1900, Planck changed his mind with respect to the probabilistic view of the 
thermodynamics. In his second paper in 1900, Planck devised the general equation 
for the spectral radiance without any mention to the statistical mechanics (Planck 
1900a). However, in his next paper, he surrendered to the Boltzmann’s probabilistic 
arguments in order to find the correct expression for the spectral radiance (Planck 
1901). He said: “I busied myself, from then on, that is, from the day of its 
establishment, with the task of elucidating a true physical character for the [new 
distribution law], and this problem led me automatically to a consideration of the 
connection between entropy and probability, that is, Boltzmann’s trend of ideas”. 
Planck took some weeks of the most strenuous work in order to convince himself 
that the mechanical statistics was the unique way to find his energy distribution law 
(Baggott 2011). 

Planck used his expertise in entropy and the second law to derive the equation 
of the spectral radiance based on an expression for the entropy of an individual 
oscillator in terms of its internal energy and its frequency of oscillation. However, the 
mathematics led him to the direction he was avoiding: the probabilistic interpretation 
of the entropy. Thereafter, Planck became an enthusiast of the atomist view where 
“the energy is composed of a very definite number of equal finite packages” 
(Baggott 2011). The statistics of large collections of simple harmonic oscillators 
with equiprobable states in phase space was used until 1913 with the arrival of the 
Bohr’s model in which physicists began to focus on individual atoms to explain 
their spectral lines with or without external (electric or magnetic) fields (see Chapter 
seven). 

5. Einstein and Planck’s constant 
In his first paper on quantum theory in 1905, Einstein recognized that Planck’s 
equation for the thermal radiation was in accordance with the experiment but he 
opposed the theory. Einstein wrote: “while we conceive of the state of a body as 
being completely determined by the positions and velocities of a very large but finite 
number of atoms and electrons, we use continuous spatial functions to determine 
the electromagnetic state of a space, so that a finite number of quantities cannot 
be considered as sufficient for the complete description of the electromagnetic 
state of a space. (…) In the following, we shall consider ‘black-body radiation’ 
in connection with experience without basing it on any model for the production 
and propagation of radiation” (Einstein 1905). It is important to emphasize Pais’ 
sentence: “In 1900 Planck has discovered the black-body radiation law without 
using light-quanta. In 1905 Einstein discovered light-quanta without using Planck’s 
law” (Pais 1979). Einstein’s main criticisms to the Planck’s law were that the U is 
the equilibrium energy of a one-dimensional harmonic oscillator, and the equation 
of the spectral radiance obtained by Einstein (see below) using Planck’s law and 
the equipartition law (the partition of energy) of the classical statistical mechanics 
U = kbT is in disagreement with the experiment (Pais 1979). 
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8πn 2 R 8πn 2 

r ( n q , ) = T = 
c3 3 kbT  

N c 
Where R is the universal gas constant and N is the number of real molecules in 
one gram-equivalent. Einstein said that the equipartition law was already known at 
that time for over three decades. Planck’s omission on the use of equation U = kbT 
in its spectral radiance equation is a consequence of his negative attitude towards 
Boltzmann’s statistical mechanics. However, due to the failure of the Rayleigh­
Einstein-Jeans law (see below) to high frequencies, the second criticism of Einstein 
is only consistent with the lack of a theoretical basis in Planck’s law. 

Einstein recognized that Rayleigh-Jeans law is theoretically correct but in 
disagreement with the experiment of the black-body thermal radiation (Pais 1979). 
Actually, Einstein gave important contribution to Rayleigh-Jeans law in the same 
year when Rayleigh and Jeans found the value for the constant c. Then, Einstein 
found that Rayleigh-Jeans law should be written as: 

r (n q , ) = cn 2T , Rayleigh 

8πn 2 Rr (n q , ) = 3 T , Einstein 
c N 

Such contribution gave the proper name to that law: Rayleigh-Einstein-Jeans 
law (Pais 1979). However, the failure of the Rayleigh-Einstein-Jeans law propelled 
the success of Planck’s law. Rayleigh said that “we must admit the failure of the law 
of equipartition in these extreme cases (high frequencies)”. Jeans had a different 
view: “the equipartition law is correct but the supposition that the energy of the ether 
is in equilibrium with that of matter is utterly erroneous in the case of ether vibrations 
of short wavelength under experimental conditions” (Pais 1979). 

In the early 1900’s Einstein recognized that Planck’s law agreed with the 
experiment but denied the existence of a theoretical basis in Planck’s law. Einstein 
realized that Planck used the r-U relation in Planck’s law from the classical mechanics 
and electrodynamics, but by introducing the quantization of the energy he came to an 
orthodox consequence of the classical theory. Einstein himself followed a different 
path that is the quantization of r known as the light-quantum theory. 

6.  Einstein and the photoelectric effect 
Elster and Geitel developed the first practical photoelectric cells (or photovoltaic 
cell) which converts light energy into electrical energy containing two electrodes in 
an evacuated glass (emitter and collector) where the incident light reaches the emitter 
metal plate and emits electrons to the collector electrode. 

Heinrich Hertz was the first to observe the photoelectric phenomenon accidentally 
during the investigations of the electromagnetic nature of light in 1887 (Hertz 1887). 
He was studying the spark discharges generated by potential differences between two 
metal surfaces. His apparatus consisted of a spark generator (RLC circuit), a spark 
gap and a receiver (induced sparks and tuner) to generate and detect electromagnetic 
waves. In a second experiment, he increased the distance between the plates so that 
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no spark could be generated by the spark generator and after he illuminated the metal 
surfaces with a nearby electric arc lamp which gave rise to the sparks. 

In 1888, Hallwachs used a different apparatus containing an ultraviolet source, 
electroscope and a zinc plate (connected to the electroscope) between them which 
absorbed the ultraviolet light from a ultraviolet source removing electrons from 
the plate which is confirmed when the plates of the electroscope are discharged to 
provide electrons to the discharged zinc plate (Hallwachs 1888). From 1888 to 1890, 
Stoletov invented a new experimental apparatus for the photoelectric effect and 
discovered a direct proportionality between the intensity of light acting on a metallic 
plate and the photocurrent induced by this radiation (Stoletov 1888). Thomsom was 
the first to state that the emitted particles from the photoeffect are electrons, i.e., 
photoelectrons (Thomson 1897, 1899) from his investigation of the ultraviolet light 
in Crookes tubes. 

In 1905, Einstein proposed a simple picture for the photoelectric effect. A light 
quantum transfers all its energy to a single electron which is independent of the 
presence of other light-quanta. He also noticed that the ejected electron losses some 
energy before leaving the surface of the metal. The maximum kinetic energy of the 
ejected electron is given by: 

E = hν – P 

Where n is the frequency of the incident monochromatic radiation and P is the work 
function (the energy needed to escape the metal surface). 

If the energy of the photon is less than the work to remove the single electron 
from the surface metal, no photoelectron is observed. If the energy of the photon is 
greater than the work to remove the single electron, then it will be ejected with a 
maximum kinetic energy E. 

E h  − h 0 = n  n  

P hn 0 = 

E h= ( − 0 )n n  

Then, Einstein proposed that the maximum kinetic energy of the photoelectron 
is a linear function of the frequency of the incident radiation (Einstein 1905). 

In 1914–1915 Millikan used visible light and various alkaline metals as targets 
linear plots of the retarding potential (V) versus the frequency where the slope 
is h and the intersection with the frequency axis is P/n0, as predicted by Einstein 
(Millikan 1916). 

After this achievement, the Einstein’s theory of the failure of equipartition of the 
black-body radiation (demonstrated in his 1905 paper) prevailed over Planck’s non-
equilibrium model (the irreversibility for conservative system). 

7. Einstein’s model of equipartition and the average energy 
According to Einstein’s model of equipartition to the black-body radiation (Pais 
1979), the entity executing simple harmonic oscillations can only have discrete total 
energies (E = nhn, n = 0,1,2,3,…). This is the quantized energy. The average energy 
is given by: 
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∑
∞

∑
∞ ∞
 

ε .P( )  ε A ε .e −ε kT ∑nh n .e −α nnh
 

ε = n=0 n=0 n=0 1
∞ = ∞ = ∞ , α = 

∑ kT P( )ε ∑ Ae −ε kT ∑e −α nnh 

n=0 n=0 n=0 

The average energy can also be written as: 

d ∞ 

ε = − ln ∑exp( −α n nh )
dαdx n o= 

∑
∞ 

exp( −α nh n ) = ( − exp( − h ))−1
 1 α n  

n o= 

d 
 ε = − ln (1  −1 

− e (−α n h ) )
dαdx  

ε = −(1 − e 
−

 ) 1 −2(−α n h )  ( −1) (1 − e (−α n h )  ) −(− h en ) −α nh  

Let us work on the last equation: 

y = (1 1
− e 

−−α n h  ) , u =1 − e −α n h

d ln y d ln y  du  
= 

dα du dα 
d ln y d u  ln −1 1 

= = ( −1) 
du du (1− e −α n h ) 

d ln y 
= ( −1) (1  −α n h ) 1

− e−

du 
d ln y −2 

= −(1 − e −α n  h  )(1 − e −α n h  )du 
d deu ' 

e u ' du ' u ' du ' 
= = e 

dαdx  du ' dαdx  dαdx 
u ' = −α nh 
du 

= − −( h e  n ) −α n h 
  

dα
 

Then, we have: 

h en −α n h hn hnε = −α n = = 
1− e h  e α nh  −1 e hn /kT −1 

Returning to the Planck’s law 

8πn 2 hn r nT ( )  = 
c3 e hn kT −1 

 

 



 

We see that it can rewritten as: 
8πn 2 

r nT ( )   = ε
c 3

8.  Einstein’s theory of interaction between matter and radiation 
In his 1917’s paper, Einstein started with the Bohr’s assumptions (see Chapter seven) 
that a molecule can only exist in a discrete set of states with energies ε1, ε2, etc., 
apart from its orientation and translatory motion. Einstein stated that the frequency 
of the nth quantum state (Wn) of a gas at temperature T is given from a Boltzmann 
derivation as: 

−εn 

W = p e  kT 
n n 

Where pn is the statistical weight of this state (Einstein 1917). 
Einstein assumed two possible quantum states Zn and Zm of the molecule where 

εm > εn, and he assumed that a transition from Zn  into Zm  is possible with absorption 
and emission energies of same value as: εm – εn, and then, he stated that the probability 
for this emission within the time interval dt is given by: 

dW = An 
m dt

Where An 
m is a constant, and the probability within the time interval dt for this 

absorption is given by: 

dW = Bn 
m ρdt

Where An and Bn 
m m are constants.

9.  Do-it-yourself activity: Plot spectral radiance vs wavelength 
Firstly, consider the following constants in the international system of units. 
Planck constant (h): 6.626*10–34 J.s 
Light speed (c): 299 792 458 m s–1 

Natural exponent (e): 2.718 
Boltzmann constant (k): 1.38*10-23 J K–1 

Sample temperature (q): 3000 K 
Secondly, use the following equation: 

2πc2 1E = 
l 5 e hc k lq −1 

Choose one spreadsheet program. In the first line, write “Lambda” (first column), 
“E first term” (second column), “power of e” (third column), “E second term” (fourth 
column), “E total” (fifth column). 

In the second line of each column write the following equations: = 1*10^–9 (first 
column – A2); = (2*6.262*10^–34*(299792458^2))/(A2^5), (second column – B2);  
= (6.626*10^–34*299792458)/(A2*3000*1.38*10^–23) (third column – C2); = 1/ 
((2.718^C2)–1), (fourth column – D2); = B2*D2. 
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In the third line of the first column (Lambda), write the equation: = A2*1.2, and 
drag it to the subsequent lines underneath until the value 9.7368E-05. Drag from the 
third line in the first column to the other columns in the third line. Drag each column 
in downward direction. 

Paste the values of the first and fifth columns side by side and draw the 
corresponding plot. 

Exercises 

 (1)  Give the algorithm and Fortran source code (see Chapter one) of the Planck’s 
law according to the last section (do-it-yourself experiment). 

 (2)  According to the classical statistical mechanics, the average energy < ε > for 
systems in thermal equilibrium energy is: 

E ∫∫εe −ε k  BT  dpdx
ε = total = 

N e−ε k T  B 
total ∫∫ dpdx 

Where p and x are linear momentum and position, respectively. For a simple harmonic 
oscillator whose energy, ε, is: 

p2 1ε = + kx 2 

2m 
Obtain its average ener
Solution: 
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Bohr, Sommerfeld and  
Old Quantum Mechanics 7 
1. Thomson and Rutherford models of the atom 
Before Thomson’s experiment on cathode rays (later known as electrons), they were 
thought as “they are due to some process in the ether to which (…) no phenomenon 
hitherto observed is analogous” (Thomson 1897). 

In 1897, Thomson firstly improved Perrin’s experiment where he showed that 
the magnetic forces deflect the cathode rays and the negative electrification follows 
the same path as the rays. Later, he used the Crookes tube (Fig. 7.1(A)) to prove 
the existence of the electrons (Thomson 1897). The Crookes tube is an electrical 
discharge tube emitting cathode rays (electrons) from the cathode to the anode 
after ionization of residual air by high voltage (See Fig. 7.1(A)). Thomson proved 
that the cathode rays are “carriers of the negative electricity” and they are bodies 
(or corpuscles), which were later called electrons. Thomson also showed that the 
electrons are much smaller that the lightest atom. Later, in 1904 he created a model 
for the atom, known as the plum pudding (Thomson 1904). In Thomson’s model, 
the electrons were similar to raising ‘embedded’ in a plum pudding (Fig. 7.1(B)). 
Thomson stated in his 1904 paper: “The view that the atoms of the elements consist 
of a number of negatively electrified corpuscles enclosed in a sphere of uniform 
positive electrification, suggests, among other interesting mathematical problems, 
the one discussed in this paper, that of the motion of a ring of n negatively electrified 
particles placed inside a uniformly electrified sphere” (Thomson 1904). At that time, 
neither protons nor neutrons were discovered. 

Prior to the Thomson’s experiment on cathode rays, Rutherford has worked with 
Thomson in the study of the electric conductivity of gases when exposed to X-rays 
(Röntgen rays). These gases are insulators but when exposed to X-rays, they have 
conducting properties (Thomson and Rutherford 1896). In this work, they discovered 
the negatively charge corpuscles later presented by Thomson in 1897. 

After his work with Thomson, Rutherford started to work with radioactivity 
where he coined the terms alpha and beta rays (Rutherford 1899). In 1902, during 
a period that atoms were thought to be indestructible, Rutherford and Soddy, stated 
that radioactive atoms break down to another atom (Rutherford and Soddy 1902). In 
1906, Rutherford invited Geiger to work with him and they designed alpha particles 



 

 Fig. 7.1: (A) Crookes tube in Thomson’s experiment; (B) Thomson’s atomic model; (C) Rutherford’s 
experiment; (D) Rutherford’s atomic model. 
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counting device with two electrodes in a glass tube. In 1908, Gieger constructed a 
long glass tube with a source of alpha particles from radium atoms at one extremity 
and a phosphorescent screen at the opposite end with a spectroscope to count the 
scintillations and measure the spread of alpha particles. In the middle, there was 
a plate with a gold foil which scattered the alpha particles, but the deflection was 
not high enough. In 1909, Geiger and his student Marsden, under the direction of 
Rutherford, improved previous Geiger’s experiment where they proved that alpha 
particles can be deflected by more than 90 degrees. They observed that metals such 
as gold—with higher atomic mass—reflected more alpha particles than aluminum— 
with lighter atomic mass (Geiger and Marsden 1909). However, they observed that 
only a small fraction of alpha particles (1 over 20,000 particles) deflected 90 degrees 
in passing through a 0.4 mm gold-foil. The scheme of Geiger and Marsden experiment 
is simplified in Fig. 7.1(C), although is not identical to the scheme presented in their 
paper. This result is incompatible with Thomson’s model of the atom. Rutherford 
deduced that the atom has a heavy central mass with a small volume surrounded by 
light masses of opposite charges. 

Rutherford had already observed that radioactive alpha particles are made 
up of two positively charged particles (i.e., the helium nucleus), then in 1911, he 
developed another atomic model (Rutherford 1911) to account for the fact that 
most of alpha particles passed through the metal leaf with no deflection. Then, 
Rutherford’s experiment showed that the nucleus was small and dense (Fig. 7.1(D)). 
The Rutherford’s atomic model in Bohr’s words is: “the atoms consist of a positively 
charged nucleus surrounded by a system of electrons kept together by attractive 
forces from the nucleus; the total negative charge of the electrons is equal to the 
positive charge of the nucleus. Further, the nucleus is assumed to be the seat of the 
essential part of the mass of the atom, and to have linear dimensions exceedingly 
small compared with the linear dimensions of the whole atom” (Bohr 1913a). 

The problem of the Rutherford’s atomic model was to conciliate with the 
Larmor formula (classical electrodynamics) that gives the total power, P, radiated 
by non-relativistic point charge as it accelerates. For example, an alternate current 
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source connected with two pieces of wire placed according to antenna design 
criterion (a broadcasting dipole antenna) generates accelerated electrons which emit 
electromagnetic waves. 

2 m r a  2 
e eP = 

3 c 
Where me and re are the mass and classical radius of the electron; c is the speed 
of light and a is the acceleration. As a consequence, an electron orbiting around a 
nucleus should lose energy and collapse into the nucleus since the electron is under 
the influence of the electric force yielding a centripetal acceleration of the orbiting 
electron. 

Other problems in Rutherford´s atomic model were: (1) the fact that it could not 
explain the spectral lines of hydrogen and other atoms; (2) the lack of natural length 
in the theory. 

2. Bohr model of the atom 
After his Ph.D. in Copenhagen in 1911, Bohr went to Cambridge to work as 
postdoctoral fellow with Thomson and also spent some time with Rutherford in 
Manchester. Both physicists had a great influence in the early studies of Bohr’s 
model of the atom. 

Bohr knew about the limitation of the Rutherford’s atomic model, and he also 
was aware of the Thomson’s model is disagreement with Rutherford’s experiment 
on large angle scattering of the alfa rays. In his first paper in 1913, he wrote: “The 
principal difference between the atom-models proposed by Thomson and Rutherford 
consists in the circumstance that the force acting on the electrons in the atom-model 
of Thomson allow of certain configurations and motions of the electrons for which 
the system is in a stable equilibrium; such configurations, however, apparently do not 
exist for the second atom-model” (Bohr 1913a). 

Bohr resolved the problem of Rutherford’s model with his postulate of stationary 
states where electrons could move in orbit without losing energy. He observed “the 
inadequacy of the classical electrodynamics in describing the behavior of systems 
of atomic size. Whatever the alteration in the laws of motion of the electrons may 
be, it seems necessary to introduce in the laws in question a quantity foreign to 
the classical electrodynamics, i.e., Planck’s constant (…). By the introduction of 
this quantity the question of the stable configuration of the electrons in the atoms is 
essentially changed” (Bohr 1913a). Then, Planck’s constant was the missing piece in 
the Rutherford’s atomic model by which one can change the classical electrodynamic 
laws of the electron in the atom into a new quantum electrodynamic law. That is the 
Bohr’s atomic model. 

For the case of the hydrogen atom, where the charge of nucleus is equal to 
the charge of one electron, the total energy radiated by the formation of one of the 
stationary states is: 

2π 2me4 

E = 2 2h n  
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Where m is the mass of the electron, e is the charge of the electron and n is a non­
negative integer number and h is Planck constant. The amount of energy emitted 
after electronic excitation is: 

2π 2me4  1 1 E n − 
2 

E n = −
1 2  2 2 h  n1 n2  

Where n1 is the principal quantum number of lower energy level and n2 is the 

principal quantum number of upper energy level. 

From photoelectric effect, by knowing that:
 

En − E  n = hν 
2 1 

We have the law connecting the lines of the spectrum of hydrogen. 

2π 2me4  1 1 ν = 3  2 − 2 h  n1 n2  
Bohr found the expression of Balmer series in his atomic model. 
Alternatively, the above equation can be written as: 

 1 1 ν = Z R  2 
∞  −

n2 n2  
 1 2  

Where Z is the atomic number of the hydrogen-like atom and R∞ is the Rydberg 
constant (1.09677 × 107 m–1). 

In 1915, Bohr has made a more general formula including the mass of the 
nucleus, M, and the correction from the theory of relativity (Bohr 1915a): 

2π 2mMe 4   1 1   π 2 4e  1 1 ν =  3 ( )  2 − 2  1 +  + h m + M  n 2 2  2 2 
 1 n2   c h   n1 n2  

In his second 1913 paper, Bohr gave the condition of dynamical equilibrium 
as the equivalence between the attractive electrostatic force between proton and 
electron of the hydrogen atom and the centripetal force exerted on the electron on a 
circular orbit around the nucleus Z = 1 (Bohr 1913b). 
F centripetal = F electrostatic ( e −Z )

2T (Ze )e 
F centripetal = , F electrostatic = K

a a2
0 0 

1Z = 1, K = 
4πε0 

e 2 mv2

K 2 = 
a0 a0 

where a0  is the Bohr radius and ν is the linear velocity of the electron. In classical 
physics, the angular momentum is given by the product of the moment of inertia, I 
(needed torque to yield angular acceleration), and angular velocity, w : 

L = Iw , I = mr 2 , w = v r , L = mvr 
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Bohr also stated that the angular momentum of an electron in a circular orbit 
around the nucleus of an atom is constrained to discrete values according to the 
quantum number, n. 

nhL = 
2π 

Bohr introduced the condition of universal constancy of the angular momentum 
of the electron where there is an equivalence between both angular momentum 
equations. 

nh mva 0 = , n = 1
2π 
h mva = 0 2π 

Then, the square velocity of the electron is obtained from the previous equation. 
2 

v2 = 
h 
2  2 24π m a0 

And it is replaced in the relation of dynamical stability. 

m h2 e2 

= K2 2 2  2a 4π m a  a0 0 0 

1 h2
2 

2 = Ke
 
a0 4π m
 

2 2 
−1  4πε0 a = K = 0 2 2me me 

The a0 is the Bohr radius—the most probable distance between the nucleus and 
the electron in a hydrogen atom in its ground state—and is 0.5292Å. 

In his theory’s review, Bohr emphasized the two postulates of his theory: 
“1. Among the conceivably possible states of motion in an atomic system there exist 
a number of so-called stationary states which, in spite of the fact the motion of the 
particles in these states obeys the laws of classical mechanics to a considerable 
extent, possess a peculiar, mechanically unexplainable stability, of such a sort that 
every permanent change in the motion of the system must consist in a complete 
transition from one stationary state to another. 2. While in contradiction to the 
classical electromagnetic theory no radiation takes place from the atom in the 
stationary states themselves, a process of transition between two stationary states 
can be accompanied by the emission of electromagnetic radiation, which will have 
the same properties as that which would be sent out according to the classical theory 
from an electrified particle executing a harmonic vibration with constant frequency. 
This frequency ν has, however, no simple relation to the motion of the particles of 
the atom but is given by the relation hν = E´–E´´, where h is Planck’s constant, and 
E´ and E´´ are the values of the energy of the atom in the two stationary states that 
from the initial and final state of the radiation process” (Bohr 1923). 
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Another Bohr’s postulate appeared in his 1915’s paper: “That the various 
possible stationary states of a system consisting of an electron rotating round a 
positive nucleus are determined by the relation: 

T = 1
2 nhw 

Where T is the mean value of the kinetic energy of the system, w the frequency of 

rotation, and n a whole number” (Bohr 1915b).
 
In his 1915’s paper Bohr used the equation of frequency of emission:
 

2 2π 2mMe 4  1 1 ν = Z −3  2 2 h (m + M )  n1 n2  
Where M is the mass of the nucleus and he stated that the energy necessary to remove 
the electron to infinite distance from the nucleus was: 

2 2π 2mMe 4 1W = Zn 2 2h m + M n ( ) 
In order to explain the Stark effect on hydrogen atom, he obtained the equation 

(Bohr 1915b): 

2 2π 2mMe 4  1 1  3h 2 2ν = Z 3  2 − 2  ± E 2 (n2 − n1 )h n n 8π Zem  1 2  

Where he found a good agreement with experimental results. 
The results obtained in 1920’s proved that the maximum angular momentum 

of the nth quantum state is different from that indicated by Bohr and, except for 
the hydrogen atom, the spectral lines of other atoms were not predicted by Bohr’s 
model. Further refinement was made by Sommerfeld to predict the spectral lines of 
hydrogen and other atoms (Bohr 1923). 

The early 1910’s Weiss’ work on some magnetic properties (e.g., the magnetic 
susceptibility) of certain metals was important to give further support to the Bohr’s 
atomic model. Weiss observed the existence of a fundamental atomic unit of 
magnetism (Weiss 1911). He inferred that a molecule could have either no magnetic 
moment or an integral number of magnetons. If an orbiting electron generates a 
magnetic dipole moment (see Chapter twelve), the existence of a fundamental unit 
of magnetism implies that the electron’s angular momenta (under atomic orbits) 
are fixed which is in accord with Bohr’s hypothesis. Weiss reported that Einstein 
and collaborators observed that this unit should contain the Planck’s constant. This 
unit was later known as Bohr magneton represented by –qeħ/2 m0c where qe is 
the electron’s charge, m0 is the electron’s rest mass and c is the speed of light (see 
Chapter twelve). 

In 1921, Bohr developed the ‘aufbauprinzip’ (also known as the aufbau principle 
or the construction principle or the building-up principle) in order to explain the 
periodic occurrence of chemical properties in the periodic table. In the construction 
principle, the bigger atoms are built from hydrogenic structure by adding further 
electrons one by one assuming that the latest addition did not change the quantum 
numbers already assigned to the earlier electrons. Every newly added electron seeks 



 

 Table 7.1: Electronic configurations of the noble gases according to Bohr’s paper (Bohr 1921). 

Helium (21) Krypton (21 82 183 82) 
Neon (21 82) Xenon (21 82 183 183 82) 
Argon (21 82 82) Niton (21 82 183 324 183 82) 

212 Quantum Mechanics: Detailed Historical, Mathematical and Computational Approaches 

the state of the lowest energy which is located in the orbit having the lowest energy 
and not fully occupied (Bohr 1921). It is the first successful interpretation of the 
electronic configuration of the elements according to their increasing atomic number 
and their arrangement in the periodic table (Table 7.1). Bohr attempted to give a 
detailed picture of the electronic configuration of the atoms. For example, in the neon 
atom, there are 2 electrons in 11 orbit (where in nk notation n is the principal quantum 
number and k is the azimuthal quantum number), surrounded by a shell of 4 electrons 
in 21 orbits which, in turn, is surrounded by more 4 electrons in 22 orbits having a 
disturbed tetrahedral symmetry (MacKinnon 1977). 

Important to emphasize that after Bohr’s work, Stoner and Pauli gave further 
and important contributions for the building-up principle (see Chapter twelve) which 
ultimately led to the Pauli’s exclusion principle (Stoner 1924, Pauli 1925). 

From 1917 to 1920, Bohr developed the concept of the “correspondence 
principle” which is the expectation or necessary connection between the classical 
mechanics and quantum mechanics in the limit of large quantum numbers and low 
frequencies (Waerden 1967). The correspondence principle has been an important 
parameter for the study of quantum mechanics from 1918 to 1925. 

An important extension of the correspondence principle was given by Van Vleck 
in 1924. As Waerden said: “Van Vleck’s idea is: if we want to estimate the absorption 
by means of the principle of correspondence, we have to compare the absorption, 
computed classically, with the difference between absorption and induced emission, 
computed from Einstein’s formulae. In the limit of the high quantum numbers, this 
difference must become equal to the classical absorption” (Waerden 1967). 

Van Vleck used the Fourier series to represent the multiple periodic motion of 
the electron in an atom: 

x = ∑ X (τ1,τ 2  , τ3  )cos  π  τ w  +τ w  +τ w  +γ ( )  x  2 ( 1 1 2 2 3 3 ) t τ τ1 2 τ3   
τ τ1 2 τ3   

and there are similar expressions for y and z coordinates, where w1, w2, and w3  
are the intrinsic orbital frequencies and the summation is extended to all possible 
positive and negative integral values of the integers τ1, τ2, and τ3. He stated that 
the classical electron radiates simultaneously all the combination overtones in the 
multiple of Fourier expansion rather than just one harmonic vibration component 
τ w1 1 +τ 2w2  +τ3w3  .

Van Vleck also formulated the quantum expression for the amount of energy 
emitted in a time interval ∆t by the transitions from state r to state s: 
∆E r s  → = h Nν rs  r  A r s  → + B r→s ρ ν ( rs   )  ∆
 t

Ne−W ( )r
 kT

N r = 
∑e−W ( )r kT 

r 
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Where Nr is the number of atoms in the state r, N is the total number of atoms and 
W(r) is the energy of the stationary state r. He compared the expression above with 
the corresponding classical expression: 

∆ =E (16 π 4 2e 3c 3 )ν 24  τ τD ( 1, 2 , τ3 )  ∆ t 

. 2
Where (2e 2 3c 3 )v  is the classical rate of radiation from an electron having a vector  .acceleration ν. 

Then, he arrived at the expression for the probability coefficient Ar→s for high
quantum numbers (van Vleck 1924a). 

3.  Bohr, Kramer and Slater’s quantum theory of radiation 
In 1918, Bohr used Einstein’s considerations (Bohr 1918) of probability law (dW) of 
the transitions of the electron from a stationary state to another within the atom under 
the influence of light (Einstein 1917). The equation below is the probability law for 
the process to occur during the time dt for the transition from state n to state m by 
absorbing radiative energy εm – εn.

dW = B m 
n ρdt 

Where ρ is the radiation density for the frequency ν (see Chapter six). 
In 1924, in collaboration with Kramers and Slater, Bohr continued his study 

of the principles of the interaction between light and matter, which became known 
as Bohr-Kramers-Slater theory (Bohr et al. 1924). Bohr, Kramers and Slater made 
an extensive use of the virtual oscillators (which came from Slater’s ideas) as a 
basis for treating the interactions between matter and light where a collection of 
atoms is replaced by a collection of simple harmonic oscillators. The idea of virtual 
oscillators was not treated as a model of an individual atom, but simply to treat the 
interaction between radiation and matter. Bohr described the oscillators as having a 
virtual existence and he did not commit himself as to link the virtual oscillator model 
and the orbital model.  

The initial Slater’s idea of virtual oscillator was: “Of course, the quanta can’t 
travel in a straight line with the speed of light (from de Broglie’s theorem); but it seems 
possible to suppose that there is an electromagnetic field, produced not by the actual 
motion of the electrons, but with motions with the frequency of possible emission 
lines and amplitudes determined by the correspondence principle, the function of 
this field being to determine the motion of the quanta. If this motion is determined 
by the condition that Poynting’s theorem shall hold over an average take over a long 
period of time, definite patterns are described, and the probability of moving along 
the paths is such, for example, as to account for interference, many quanta being 
led to the bright spots in the field” (Hendry 1981). As said: “On receiving Slater’s 
idea, Bohr apparently reacted warmly to the extension of the oscillator approach 
to include some kind of wave field but rejected outright the introduction of light-
quanta” (Hendry 1981). Then, Bohr and Kramers changed Slater’s initial idea into: 
“An atom may, in fact, be supposed to communicate with other atoms all the time it 
is in a stationary state, by means of a virtual field of radiation, originating from the 
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oscillators having the frequencies of possible quantum transitions, and the function 
of which was to provide for stationary states conservation of energy and momentum 
by determining the probabilities of quantum transitions” (Hendry 1981). Slater 
opposed to the new interpretation of his idea (mainly the refutation of light-quanta) 
and left Copenhagen prematurely. Sommerfeld and Compton (from the Compton 
effect) insisted in the necessity of the association between light-quanta and energy-
momentum conservation. 

Bohr stated that the quantum theory must in a certain sense be a natural 
generalization of the classical electrodynamics. As he said: “This is evident from 
the condition that in the limit, where we consider processes which depend on the 
statistical behavior of a large number of atoms, and which involve stationary states 
where the difference between neighboring stationary states is comparatively little, 
the classical theory leads to conclusions in agreement with the experiments” (Bohr 
et al. 1924). This is the case of the Zeeman effect where Lorentz could explain 
it classically. Bohr also added that “In the case of emission and absorption of 
spectral lines, this connection between the two theories has led to the establishment 
of the correspondence principle, which postulates a general conjugation of 
each of the various possible transitions between stationary states with one of 
the harmonic oscillation components in which the electrical moment of the 
atom, considered as a function of the time, can be resolved. This principle has 
afforded a basis for an estimation of probabilities of transition, and thereby 
for bringing the problem of intensities and polarization of spectral lines (see 
Chapter eight) in close connection with the motion of the electrons in the atom” 
(Bohr et al. 1924). With the aid of the correspondence principle it was possible 
to give a quantum explanation of the Zeeman effect for the hydrogen lines whose 
results were similar to those from the classical explanation given by Lorentz, 
although the essence of both assumptions were different (Bohr 1923). According to 
Bohr,it was important to give a quantum explanation to the Zeeman effect since the 
classical electrodynamical theory could not explain several phenomena which are 
contradictory to the classical electrodynamical theory. 

As to the Stark effect, Kramers in his Ph.D thesis calculated the intensities of the 
lines of the fine structure of the hydrogen atom from Stark effect (Kramers 1919). 
As Bohr said: “the position of the lines corresponds to the frequencies calculated 
for the different transitions, and the lengths of the lines are proportional to the 
probabilities as calculated on the basis of the correspondence principle (…) the Stark 
effect reflects down to the smallest details the action of the electric field on the orbit 
of the electron in the hydrogen atom” (Bohr 1923). In Bohr’s paper (Bohr 1923) 
there are two figures (Figs. 6 and 7) showing the experimental and the theoretical 
splitting of the spectral lines of the hydrogen atom and it is important to add that their 
similarities are remarkable. 

In Kramers’ 1924-paper he stated: “It is well known that a consistent description 
of the phenomena of dispersion, reflection and scattering of electromagnetic waves 
by material media can be given on the fundamental assumption that an atom, when 
exposed to radiation, becomes a source of secondary spherical wavelets, which 
are coherent with incident waves” (Kramers 1924). He imagined that the incident 
radiation was a plane monochromatic train of polarized harmonic waves (which 
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corresponds to coherent and incoherent scattering) where primary wavelets had 
frequency ν and amplitude E (intensity of the incident electromagnetic plane wave) 
and the secondary wavelets (from a varying electrical doublet, i.e., a varying electric 
charged dipole) had frequency ν and amplitude P (the induced polarization) which 
is proportional to the amplitude E of the incident waves whose phase difference 
between them is φ. Their electric vectors are given below and the relation between E 
and P related to an atom with electron of charge -e and mass m isotropically bound to 
a position of equilibrium with natural frequency ν1 is given below: 
  
ℑ = Ev cos (2πν t )
  
℘= Pwcos (2πν t ) 

e2 I 
= 

2 2 2m 4π ν −ν 
P E  

( 1 ) 
Then, Kramers arrived at an equation for P that worked but never had been given 

a theoretical justification. 
2 e2 Ia a e eP = E∑ Ai τ i

e I 
− E∑ Ajτ j2 a2 2 2 e2 24π ν i ν (i m ( − ) j m 4π ν j −ν ) 

Where A is the probability of the isolated atom performing in unit time one transition 
and τ is the decay characterizing the same transition. 

4. The states of the system and the Sommerfeld’s ellipses 
The (linear) momentum, p, of a point mass, m, moving at a velocity, v, is: 
p = m v⋅ 

dqp m  ⋅= 
dt 

Where q is the position coordinates. It is also known from the classical mechanics 
that: 

dp ∂Epot= F = − 
dt ∂q 

Where Epot is the potential energy (a function of the position coordinates). 
The kinetic energy is given by: 

m  dq 
2 1 2Ekin =   = p

2  dt  2m 

The Hamiltonian function, H, is the total energy of the point mass: 

H q p  ( ,  )  = Ekin + Epot 

The momentum p and position coordinates q determine the state of the system. 
As we mentioned before, the idea of the electron moving as a harmonic oscillator 

where the nucleus of the atom is the rest point came from Lorentz’s theory, and, 
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Planck, Sommerfeld and Heisenberg used this in their theories as a starting point or 
inspiration. Classically, the oscillator is a spring attached to a point mass m at rest 
position whereby the point mass moves in one direction from the rest position. Due 
to the spring (which in the case of the atom is the electric field between proton of the 
nucleus and the electron), the mass experiences a restoring force. The movement of 
the point mass is described by a sinusoidal wave: 

x q  = a sin 2 = πν t 
Where ν is the oscillation frequency, t is time and a is the amplitude of the oscillation. 
The momentum p of the harmonic oscillator is: 

dqp = m = 2πν ma cos 2 πν t
dt 

Let us eliminate the variable time, t, from the expressions above by squaring the 
last two equations and using a trigonometric identity: 

2 2 2q = a sin x , x = 2πν t 
2 2 2p = b cos x , b = 2πν ma 

sin 2 x + cos 2 x = 1 

2 q2
2 p2 

sin x = 2 , cos x = 2a b 

Then, we have: 

q	2 p2
 

2 + 2 = 1, b = 2πν ma
 
a b 

The above equation is an ellipse in the p,q-place where b is the semi-minor axis 
and the ratio b/a is a constant. 

b 
= 2πν m 

a 
The area of the ellipse (abπ) is equivalent to the ratio E/ν, where E is the constant 

vibrational energy. For example, in t = 0 in the rest position (where Epot = 0), the 
kinetic energy is equal to E and we have: 

m  dq 
2 

=Ekin  2  dt 
 
dq
p = = 2πν a cos 2 πν t
dt
 

m 2
Ekin = (2πν a) cos 2 2πν t
2 

t = 0, cos 2 0 = 1 
Ekin = E = (2πν ma)( π a)ν = bπ ν a 
E 
= abπ

ν 



( )

3 2

0

0: 0

:

n

n

p dq p dq h

p p dq nh

as p dq

then p dq nh
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By changing the value of E, one can obtain similar ellipses in the plane (p,q). 
The area difference between two consecutive ellipses is the Planck constant. 

∆E 
= h , ∆ =E hν

ν 

In the classical theory, all points of the state plane of the ellipses are equal. 
In quantum theory, those states are distinguished from each ellipse they belong to. 
They are the stationary states of the oscillator, i.e., the charged mass point without 
radiation within a specific ellipse. When the charged mass point moves from one 
ellipse to a smaller ellipse, it emits energy hν. 

Sommerfeld’s work improved Bohr’s atomic theory by including a second 
quantum number (subordinate quantum number) and changing the perspective from 
a simply periodic to a doubly periodic system ruled by a (p,q) plane state. Each 
elliptical orbit is designated by a symbol nk (or simply k) where n is the principal 
quantum number and k is the subordinate quantum number. All orbits with the same 
principal quantum number have the same major axis, a, and all orbits with the same 
subordinate quantum number will have the same semi-minor axis, b (Bohr 1923). 

5. Sommerfeld extension of Bohr’s atomic theory 
Sommerfeld was doctoral advisor of Heisenberg and Pauli. He introduced them to 
Bohr and Born who also worked with them. Besides his great contribution to the 
old quantum mechanics, he wrote the famous book of spectroscopy: ‘Atombau und 
Spectrallinien’ (atomic structure and spectral lines) which influenced several famous 
physicists. 

In 1916, Sommerfeld wrote two lengthy papers with the same title about the 
quantum theory of the spectral lines which became an extension of the Bohr’s model 
(Sommerfeld 1916a, 1916b). 

Sommerfeld adapted Bohr’s quantization condition to Planck’s phase space 
ideas and he developed the phase-space quantization rule which restricts the values 
of the integral of the conjugate momentum p of some generalized coordinate q over 
one period of motion to integer multiples of h. In addition, Sommerfeld generalized 
Bohr’s model by allowing elliptical orbits as well as circular orbits. He recovered 
Bohr’s quantum number n as the sum of two quantum numbers r and k. 

Sommerfeld showed his quantization condition from Planck’s quantization 
condition (Sommerfeld 1916a): 

Planck : dpdq = h∫∫ 
dpdq = p dq − h∫∫ ∫ n ∫ pn−1dq = 

n = 1,2,3,... 

p dq − p dq =h∫ 1 ∫ 0 

∫ p dq 2 1 =h− p dq ∫ 



1

1 0

2 1

:

1, 2,3,...
n n

Planck dpdq h

dpdq p dq p dq h

n

p dq p dq h

p dq p dq h

−

=

= − =

=

− =

− =

∫∫
∫∫ ∫ ∫

∫ ∫
∫ ∫
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∫ p 3 dq − ∫ p 2 dq =h

 

∫ ( pn − p 0  ) dq = nh

as : ∫ p 0 dq = 0

then : ∫ p n dq = nh

Born commented on Sommerfeld’s work that: “He investigated the elliptic 
motion of the electron and found that there are actually three quantum numbers 
connected with it which, however, for an ‘undisturbed’  atom combine to one number, 
that appearing in Balmer’s formula. But by exposing the atoms to perturbations the 
effect of these three numbers can be separated. Thus, the splitting of the spectral 
lines by magnetic and electric fields, the Zeeman- and Stark-effect, were explained. 
In the magnetic case the different energy levels correspond to precessional motions 
of the plane of the elliptic orbit at different inclinations to the direction of the field” 
(Born 1952). 

In Sommerfeld’s work, it was used two-dimensional Keplerian motion in 
polar coordinates with azimuthal (ϕ) and radial (r) coordinates associated with the 
corresponding momenta pϕ and pr in two integrations over a complete elliptical orbit 
(Eckert 2014). 

∫ pϕ d ϕ = kh 

∫ p r dr = rh 

Where k and r are the azimuthal and the radial quantum numbers (non-negative 
integers), respectively. The sum of both quantum numbers gives Bohr’s principal 
quantum number, n. 

n = r + k 

Sommerfeld quantized separately the linear and angular momenta associated 
with the quantum numbers k and r. The quantum numbers r and k determined 
respectively the size and shape of the orbit, respectively. 

Bohr proposed that the electron in an orbit could only exist in certain well-
defined, stable orbits which satisfied the integral: 

∫ pdq = nh , n ∈ 

Which became known as Bohr-Sommerfeld quantization rule.
 
In Bohr-Sommerfeld model, the angular momentum, L, of the electron is:
 

kh L = = k
2π 

where : k = 1, 2,3,..., (n k ) 
gth of the mWhere n is the len ajor axis and k the length of the minor axis of the 

ellipse. When n = k, the orbit is circular. 
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Each stationary state corresponds to a nk-orbit for the electron, where n is the 
principal quantum number and k is the azimuthal quantum number. Hydrogen and 
helium have one or two 11 orbits, respectively. Lithium and berilium have two 11 
orbits, plus one or two 21 orbits, respectively. And so on. One electron in each orbit, 
each chemical element is built up by adding an outer electron to the electronic 
configuration of the previous element according to the atomic number. 

The first observation of doublets, quartets and sextuplets in 1920’s indicated 
that the multiplicity in the energy levels were not correctly accounted for the n and 
k alone. Then, Sommerfeld created a third quantum number j (called inner quantum 
number) which corresponds to energy-sublevels that nk orbits split to give rise to the 
multiplets (Sommerfeld 1920). The third quantum number lacked clear geometrical 
or physical meaning, but it was a useful empirical rule for doublets and triplets: the 
doublets originate from j = k, k-1 and triplets come from j = k, k-1, k-2. 

One year later Landé gave a physical meaning to the inner atomic number j, called 
atomic core model (Landé 1921) where the atomic core of any atom (core electrons 
and nucleus) has a non-zero angular momentum denoted by a core quantum number 
r (or s) and it has a corresponding vector R (or S in modern notation). The orbital 
angular momentum of the valence electrons is denoted by the azimuthal quantum 
number k (or l) and it has a corresponding vector K (or L in modern notation). The 
sum or R and K (or S and L) gives the total angular momentum vector J. Landé 
identified the total angular momentum with Sommerfeld’s inner quantum number 
j. The atomic core angular momentum was later substituted by the electron’s spin 
angular momentum (see Chapter twelve). 

6. The limitations of Bohr and Sommerfeld’s atomic model 
As van Vleck has appointed in 1924: “The study of helium, the simplest atom except 
hydrogen, should be a key to a generalized Bohr theory of atomic structure. However, 
no satisfactory model of normal helium has yet been devised, for the models of Bohr, 
Langmuir, Franck and Reiche, and Landé all give the wrong ionization potentials if 
the non-radiating orbits are determined by Sommerfeld quantum conditions” (van 
Vleck 1924b). 

In the same year, Heisenberg pointed out that: “Since the empirical material on 
the anomalous Zeeman effects was systematically organized by Landé according 
to the previous quantum theoretical principles and put into formulas, it has become 
increasingly clear that an explanation of the phenomena of the anomalous Zeeman 
effect must bring about profound changes in our quantum theoretical ideas (that is, 
the old quantum theory). This is shown particularly impressively in the failure of 
the structural principle with respect to the statistical weights of atomic residue and 
electrons (Heisenberg 1924). 

Then, the helium atom was responsible for the turning point in Physics from the 
Bohr and Sommerfeld’s atomic model (later known as the old quantum theory) into 
modern quantum theories of Heisenberg and Schrödinger. 

Other limitation of Bohr’s model was the refutation of light-quanta. As Pauli 
wrote to Kramers: “[The ideas of BKS] thus move in completely wrong direction: 
it is not the energy concept that is to be modified but the concepts of motion and 
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force. One can indeed define no fixed path for the light-quanta where interference 
phenomena are present, but nor can one define any such paths for the electrons in 
atoms; and to doubt the existence of light-quanta on the grounds of interference 
phenomena is just as little justified, therefore, as to doubt the existence of the 
electron would be” (Hendry 1981). The Compton effect (the scattering of a photon 
by an electron, increasing its wavelength) proved the existence of the light-quanta, 
i.e., that the light cannot be described only as wave (Compton 1923), which Bohr and 
Kramers rejected till the end of the old quantum theory. 

7.  Do-it-yourself activity: find the transitions of visible spectrum 
of the hydrogen atom 

By knowing the values of the Balmer lines (656.3 nm, 486.1 nm, 434.0 nm and 410.2 
nm), (1) find the corresponding frequencies in wavenumber for the Balmer lines. 

After that, convert the frequency unit in wavenumber (m–1) into energy unit (eV) 
by using the relation below. 

Important to know that the wavenumber, κ, is analogous to the frequency and it 
informs how many wavelengths fit into a unit of distance. The wavenumber has an 
inverse relation with wavelength, λ, that is, λ = 1/κ. 

c c ν = = = cκ
λ 1 κ 

E photon = hν = hcκ

hc =1.99×10 −25 J ⋅ =m 1.23984×10 −6 eV ⋅m 

E =1.23984×10 −6 [eV m] κ m−1
photon ⋅ ×    

1 E photon = ×κ [eV ] 
806554 

For :κ = 806554m−1 ⇒ E photon =1eV 

Then, we use the relation below: 
1 Ephoton = ×κ

806554 
The energy levels for the hydrogen atom are: n = 2 (E = –3.4 eV), n = 3  

(E = –1.51 eV), n = 4 (E = –0.850 eV), n = 5 (E = –0.544 eV), n = 6 (–0.378 eV).  
(2) Obtain the energy differences according to the transitions in the Balmer series 
(from n = 2 to n = 3, 4, 5 and 6) 

Then, use the relation above (whose input is the frequency associated with 
the transitions of the Balmer lines) in order to (3) find the same values of energy 
difference  (or the energy of the emitted photon from the transition in the hydrogen 
atom). Finally, (4) establish the relation between the energy (and frequency) of the 
emitted photon and its corresponding transition. 
Answers:  Values of the frequencies of the emitted photons and their corresponding 
transitions: 1.524 × 106 m–1 (n = 2 = > 3), 2.057 × 106 m–1 (n = 2 = > 4), 2.304 × 106  
m–1 (n = 2 = > 5) and 2.437 × 106 m–1 (n = 2 = > 6). 
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Heisenberg’s Matrix 

Quantum Mechanics
 8 
1. Heisenberg before 1925’s famous paper: the turning point 

from old to modern quantum mechanics 
Heisenberg was Sommerfeld’s doctorate student and submitted his dissertation under 
the title “On the stability and turbulence of liquid currents” in 1923. He was only 21 
years old and had “complete command of the mathematical apparatus and daring 
physical insight” as his mentor affirmed. The problem proposed by Sommerfeld 
(which was a very difficult one) was to determine the transition from laminar fluid to 
a turbulent fluid. Heisenberg’s results were only confirmed twenty-five years later. 

In 1922, Heisenberg wrote to Sommerfeld: “I am now working with Born to 
improve and refine the Born-Pauli method (of perturbation theory); with its help, for 
instance, one can prove that the quantum theory demands phase relations between 
the electrons of an atomic system” (Rechenberg 2000). Then, Heisenberg was 
simultaneously working with Sommerfeld in Munich and Born in Gottingen during 
his doctorate course. 

Due to Heisenberg’s lack of interest in experimental physics, Heisenberg had 
failed to derive the resolving power of telescope, interferometer and microscope during 
the final oral of his doctorate course. The final grade was based on his dissertation 
and final oral. He had the lowest passing grade from Wien (an experimental physicist) 
and highest passing grade from Sommerfeld (a theoretical physicist). Heisenberg was 
shocked for receiving the lowest passing grade in his doctorate. In the same night, he 
moved from Munich to Gottingen to work with Born after completing his doctorate. 

Born (a former PhD student of David Hilbert) and Heisenberg tried to establish 
phase relations between the two orbiting electrons of the helium atom (Born and 
Heisenberg 1923a). In this work, they used the Hamiltonian function (see Chapter 
seven), perturbation theory (see Chapter eighteen) and relations similar to those 
given below: 

( ,  )  = Ekin p + E q ,H q p  ( ) pot ( ) 
∂H ∂Epot ∂H ∂E pThen : = , = kin = 
∂q ∂q ∂p ∂q m 

dq ∂H dp ∂HAnd : = , = − 
dt ∂p dt ∂q 
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In a subsequent paper (The electron trajectories in the excited helium atom), 
Born and Heisenberg adapted the Bohr’s core model to calculate allowed energy 
levels of the excited helium (Born and Heisenberg 1923b). They expressed the 
Hamiltonian function of the helium atom as: 

1  2 1  1   1  1  1  
H =  p + 2 p2 2 2 

 + p + p + p2 
 p +     2m  r1 r 2 sin 2 θ ϕ1 θ1   r 2 2 2 ϕ 2 θ 2 

 1  1  2m r θ  2  sin 2  


e Z2 e Z  2 e2


− − + 
r1 r2 r 2 

1 + r 2
2  − 2r r  1 2   cosθ1 cosθ2 + sinθ1 sin θ2 cos (ϕ ϕ1 − 2 ) 

Where r1, θ1, ϕ1 and r2, θ2, ϕ2 are polar coordinates of the electrons 1 and 2. 
Their formulation placed the excited electron in an outside orbit above the core 

(the nucleus and the unexcited electron). Though they did not succeed to obtain 
results similar to the experimental ones, they obtained the correct general form of the 
spectral lines (Born and Heisenberg 1923b). 

Born himself had already adventured on molecular theories when he wrote 
in 1922 a paper entitled “On the model of the hydrogen molecule” also using the 
perturbation theory (Rechenberg 2000). In 1924, Born and Heisenberg studied 
the quantum theory of molecules (Born and Heisenberg 1924) where they used 
the perturbation theory for the Hamiltonian function of a molecule in which they 
expanded the energy of the states as (Born and Heisenberg 1924): 

H = H 0 + λ 2H 2 + λ3H + λ 4
3 H 4 , λ  = m M 

Where m and M are the mass of the electron and nuclei, respectively. Important to 
note that Born had already used the perturbation theory for the Hamiltonian function 
of the atom (Born 1924). In this Born-Heisenberg approach, they developed the steps 
for the appropriate treatment of the quantum theory for molecules without the need 
of a descriptive picture of the molecule: 

 (a)  The molecule is treated as a rigid rotator; 
 (b)  The vibrations of the nuclei are included and added to the rotational motions; 
 (c)  The interactions between rotations and nuclear vibrations are added; 
 (d)  The inclusion of electronic and nuclear angular momentum to the previous 

results; 
 (e)  The full treatment of the nuclear and electronic structure of molecules. 

Still in 1924, Heisenberg completed his habilitation thesis working on anomalous 
Zeeman effect (Heisenberg 1924) under Born. The Zeeman effect (the splitting 
of each spectral line into three lines under magnetic field for singlet atoms where 
spin does not influence the splitting) had been explained by Sommerfeld, but the 
anomalous Zeeman effect (the splitting of each spectral line into three or more lines 
of an open-shell atom, doublet or triplet, for example, under magnetic field where the 
spin takes its part) is a more complex problem. 

Despite the sad outcome of Heisenberg’s doctoral grade, Sommerfeld was very 
important for presenting Heisenberg his atomic model and for introducing him to 
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Bohr. In late 1920’s Sommerfeld assigned the problem of the anomalous Zeeman 
effect to Heisenberg. They also worked together using the correspondence principle 
for the study of X-ray doublets (Sommerfeld and Heisenberg 1922). In Sommerfeld’s 
model (later known as Heisenberg’s core model), there is an optical electron (which 
is an old term for the valence electron) in an outside orbit and the Z-1 core electrons 
in inner orbits (see Chapter twelve). For Sommerfeld, the optical electron can have 
a magnetic interaction with the core to produce the splitting of the energy levels. 
Heisenberg adapted this model by assigning the core (the core electrons and the 
nucleus) an average angular momentum of ½ and the optical electron the value n-½ 
(Heisenberg 1922). Depending on whether the two angular momenta are parallel or 
anti-parallel would determine the exchange energy between them. Then, Heisenberg 
developed formulas for the anomalous Zeeman effect (MacKinnon 1977). In his 
subsequent work in collaboration with Landé Heisenberg developed the second 
core model on the anomalous Zeeman effect based on neon ion and atom (Landé 
and Heisenberg 1924). At that time, Heisenberg had only modified the way of the 
coupling of the core and optical electrons preserving Landé g-values. See more 
details about Heisenberg’s core model in Chapter twelve. 

Bohr gave a series of lectures on quantum atomic physics in June 1922 which 
had awakened in Heisenberg a great interest on his atomic model. After becoming 
“privatdozent” in 1924, Heisenberg went to Copenhagen to research with Bohr from 
September 1924 to May 1925. Heisenberg worked with Kramers (former Bohr’s 
doctorate student) on the problem of dispersion, i.e., the scattering of the photon by 
an atomic electron from where the incident radiation has wavelength larger than the 
atoms. Ladenburg had previously treated the dispersion electrons as oscillators (an 
extension of Lorentz model) and the electrons disturbed by electromagnetic radiation 
return to equilibrium positions through damped oscillations (Ladenburg 1921). 

Kramers and Heisenberg presented a systematic treatment of the interaction 
between matter and radiation (Kramers and Heisenberg 1925). They continued 
previous Kramers’ work (Kramers 1924) using his equation (see Chapter seven) for 
the problem of dispersion: 

a a e2 I e e e2 IP = E∑ Ai τ i − E∑ Ajτ j2 a2 2 2 e2 24π ν i ν (i m ( − ) j m 4π ν j −ν ) 
Heisenberg found that this equation fits Slater’s virtual oscillator theory where 

an individual atom is treated as a set of virtual oscillators. The virtual oscillator 
model dispenses the notion of stationary states and uses systematic perturbations 
of the electron’s motions rather than orbits. In the virtual state model the incoming 
radiation excites the outer electron (the optical electron) to a virtual state from which 
it decays. Heisenberg found that this approach worked better than Bohr model. They 
showed that the transition frequencies are not constant although the frequencies 
(derived from Fourier transform) of sharp classical orbits are equally spaced. As 
they stated: “The electric moment of the system as a function of these variables is 
assumed by the following multiple Fourier series” (Kramers and Heisenberg 1925). 
Important to note that the Lorentz model for the electron is a charged particle on a 
‘spring’ (a dipole oscillator with a simple harmonic oscillator) its position, x(n,t), 
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where the stationary state is labeled by n, can be expressed as a Fourier series (see 
Chapter two) in the frequency of the oscillator. 

iω ( )n t  ( , )  = a e  x n t  ∑
∞ 

α 
α =−∞ 

The x coordinate can be generalized to the real coordinate q (since x is usually 
restricted to x direction), the angular frequency can be changed into the linear 
frequency, and the n quantum state can be neglected. Then, the Fourier series can 
be written as: 

r(2π ν  i t )q t  ( ) = 
∞ 

q e∑ r 
r=−∞ 

ω = 2πν 

Which can also be represented as: 
q t  ( ) = a0 + a1 cos (2πν t ) + a2 cos 2 2 ( πν t ) + a3 ( πν t ) + ...cos3 2 

+b1 sin 2πν t + b sin 2 2 πν t + b3 sin 3 2 πν t + ... ( ) 2 ( ) ( ) 
They gave rise to the formulation later known as the Kramers-Heisenberg 

dispersion formula (or Kramers-Heisenberg scattering cross-section) based on the 
correspondence principle applied to the classical dispersion formula for light. Later 
on, Dirac developed its quantum mechanical derivation which could be used for the 
cases where the classical analogies are obscure or non-existent (Dirac 1927). 

The turning point for Heisenberg to create the matrix quantum mechanics was 
when he studied the problem of the emission of polarized light by fluorescent sodium 
and mercury vapors under a magnetic field (Hanle effect). The Hanle effect is the 
reduction in the polarization of the light from gaseous atoms (as a source of light) 
when it excites the gaseous atoms of the same substance in another compartment 
(resonance tube) under a magnetic field in a particular direction. The states that are 
degenerate at zero magnetic field are split due to the magnetic field (similarly to 
the Zeeman effect). As stated by Wood and Ellett: “The polarization is normally 
rather feeble with the bulb at room temperature, on account of the strong secondary 
resonance of the vapor surrounding the region traversed by the primary beam (…) 
the best results are obtained with the stem of the bulb cooled in a mixture of ice and 
salt (…) with the earth’s field neutralized we have obtained as high as 90 percent of 
polarization” (Wood and Ellett 1923). Two main observations by Woor and Ellett 
were: (1) as the magnetic field increases the polarization percentage decreases; 
(2) The polarization of the light can be destroyed by a magnetic field in a certain 
direction (Wood and Ellett 1923). A typical experimental arrangement for the 
polarization of resonant fluorescent radiation consists of a source of radiation, a 
focusing lens, a polarizing prism where the polarized light reaches the resonance 
tube and the light emitted from the resonance tube at right angle is focused to another 
lens passing through another polarizing prism and a photocell which measures the 
intensity of the polarization. 

To Bohr’s mind, the Slater’s model did not contradict his model because 
they could be related through the correspondence principle (Bohr 1924). Bohr 
assumed that the virtual oscillator model had common features with the core model 
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(a specialized version of Bohr’s general model). Heisenberg did not agree with the 
above-mentioned statement for the problem of the polarization of the fluorescent 
light. To him, the virtual oscillator model was the correct one because it dispenses the 
notion of stationary states and uses systematic perturbations of the electron motions. 
From the case of the resonance fluorescence on, Heisenberg used only the virtual 
oscillator model as a basic tool (MacKinnon 1977). 

Pauli, a Heisenberg’s colleague from Göttingen, probably somehow influenced 
this change in Heisenberg’s position towards Bohr’s model because he was a strong 
critic of Bohr’s model. Pauli criticized the idea of an electrical field at a point and the 
way physicists accepted the electronic orbits as a reality of the atoms (MacKinnon 
1977). Pauli had shown that was possible to explain the anomalous Zeeman effect 
without the use of Bohr’s core model. He stated that any closed shell must have a net 
angular momentum of zero and that the magnetic effects (the ones associated with 
the polarization of fluorescence light) attributed to the core must be related only to 
the optical electron. In this paper Pauli was postulating a new fourth degree of the 
electron which admits only two values instead of a continuous distribution associated 
with the classical degrees of freedom (Pauli 1924). 

2. The birth of modern quantum mechanics: Heisenberg’s 
1925’s paper 

Heisenberg’s matrix mechanics disrupts with Borh’s atomic model and provides 
the matrix elements that represent the dynamical variables which determine the 
intensities and the frequencies of radiation emitted. 

Heisenberg began 1925’s paper by disrupting with his own previous attachments 
with the old quantum theory and following Pauli’s advice: “discard all hope of 
observing hitherto unobservable quantities, such as position and period of the 
electron, and to try to establish a theoretical quantum mechanics, analogous to 
classical mechanics, but in which only relations between observable quantities 
occur” (Aitchison et al. 2004). Heisenberg solved the problem in two different ways, 
(1) using the virtual oscillator model; and (2) treating the harmonic potential term as 
a perturbation to the harmonic oscillator, yielding the same results. Then, he realized 
that he could dispense with the interpretation of the virtual oscillations. Heisenberg 
was isolated in a small island (Helgoland) in North Sea to recover from a hay fever 
when he wrote this paper. 

In Heisenberg’s work (Heisenberg 1925), he stated that in the atomic range, 
classical mechanics is no longer valid and one of the main conditions was to fulfill 
the correspondence principle (for large quantum numbers, the new results should 
converge to those obtained in classical mechanics). Heisenberg replaced the motion 
of the electron (a non-observable property) into the transition of the electron (an 
observable property). He stated: “It is necessary to bear in mind that in quantum 
theory it has not been possible to associate the electron with a point in space, 
considered as a function of time, by means of observable quantities. However, even 
in quantum theory it is possible to ascribe to an electron the emission of radiation” 
(Heisenberg 1925). 
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The motion of the electron is represented in a Fourier series: 
iω ( )n t  ( , )  = a e  x n t  ∑

∞ 

α 
α =−∞ 

Where n is the state of the electron and ω(n) is the fundamental frequency. In some 
texts, aα, is replaced by Xα(n), and x(n,t) is replaced by q(n,t). 

In order to characterize this radiation (the emission of radiation), it is needed the 
frequencies as a function of two variables (n, α) where n → n – α is the transition 
during the emission of radiation. 

ν ( , −α ) = 
1 E n  − ( −αn n   ( ) E n  ) h 

In Heisenberg’s work, the motion of the electron became the transition of the 
electron from state n to m: 

xnm = a ( , ) iω(n m t  , )n m  e  
iω( , − )n n  α tor :  ( )  = X (n n −α )ex t , 

Where the transition amplitude a(n,m) or X(n, n – α) depends on two discrete 
variables. The ensemble of all quantities x(t) can be represented in a matrix. 

Next, Heisenberg wanted to know the quantum meaning for |x(t) |2. In classical 
theory, |x(t) |2 is represented via Fourier series. 

∞

2 i α +β −α ω ( ) 
n t  x t( )  = ∑ aα ( )n a  β α  ( )n e  ( ) 

−
 
α =−∞
 

2 iβω ( )Then : x t ( )  = ∑
∞ 

bβ ( )  n e n t  

β =−∞ 

∞ 

n ∑ ( )  β αwhere : b ( )  = a n a β α −
 
α =−∞
 

The square of x(t) in quantum theory depends only on the transitions, then the 
β n [ n t] [ ω n n  ) ]quantity b ( ) exp  iβω( )  is expressed as: b n n( ,  − β ) exp  i ( ,  − β t and then, 

we have: 
i  n n  ω ( ,ω ( ,  −β )t  i n n−β )tb n n( ,  − β )e = ∑a ( , −α ) ( n −α , nn n  a  − β )e 

α 

This equation can be written as: 
i  n n  ω ( ,ω ( ,  −β )t  i n n−β )tb n n( ,  − β )e = ∑a ( , −α ) ( n −α , nn n  a  − β )e 

α 

Then, we have: 

b n n( ,  − β ) = ∑a ( , −α ) ( nn n  a  −α , n − β ) 
α 

This equation indicates that the term b is computed by summing up all the 
products of some group of terms a(n, n – α) by some group of terms a(n – α, n – β). 
In classical theory, the energy emitted per unit time in a transition is: 

 dE  e2
4 2 

  3 αω( )− = [ n ] α ( )a n  
 dt α 3πε0c 
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In Heisenberg’s work, the energy derivative is replaced by the product of the 
transition probability per unit time, P(n, n – α): 

e 2P ( n n, − 3 2
	  α ) = n n  

c 3 [ω( ,  −α )  ] a( ,  n n  −α )
3πε0

The above equation refers to only one specific transition. 
On the quantum theory of Heisenberg, q(t) or X(t) is expressed in terms of the 

amplitudes and frequencies of the spectral lines related to q(t). The frequencies, 
ν(nm), are the differences of the Ritz term series: T1, T2, T3,..., where T is the 
diagonal matrix: 

T1 0 0 0  
 0	 T  

T =   2 0 

    0   

 
 0 0 0 Tn  

ν (
 nm) = T n −Tm 

ν (
 mn) = −ν (nm ) 
ν  (nn ) = 0

Just as Fourier series represent a real coordinate q (sometimes named X), the 
square of modulus of q is: 

q (mn) = q * (nm ) 
then : q (nm) q ( mn ) = q ( nm) 2 

Where we have: 

q = ∑qr exp ( 2 π νir t ) 
r 

2   	  q = ∑   q σ exp (2 π σi t  ν  )  ∑q  exp ( 2 π σi ' ν t )
 σ 

σ ' 
 σ '  

r = σ σ+ '
q2 = ∑∑  qσ	 q r−σ exp ( 2 π νir t )
 

r	 σ 

q2 = ∑Qr exp (2 π νir t )

r 

where : Qr = ∑qσ q r−σ 
σ 

3.  Born and Jordan’s contribution to quantum mechanics 
Before publishing this work, Heisenberg delivered the manuscript to Born who 
realized that the last two equations were a matrix multiplication which Heisenberg 
did not know it at that time. Six months after the publication of Heisenberg’s work 
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(Heisenberg 1925), Born and Jordan wrote a paper where they established the matrix 
form for all possible transitions (Born and Jordan 1925): 

i 2πν (n m t  , )X = (a (n m  e  ) ), 

Then, we have: 
2π ν  i (0,1 )t 2π ν  i (0,2 )t 0 a (0,1 ) e a (0, 2 ) e 

 
 

2π ν  i (1,0 )t 2π ν  i (1,2 )t 
X  a (1, 0 ) e 0 a (1, 2 ) e  =  2π ν  i (2,0 )t 2π ν  i (2,1 )t

 a (2, 0 ) e a (2,1 ) e 0  
 

     
where :ν ( ,  )  n n = 0 

The off-diagonal elements of the matrix correspond to transitions. Let us derive 
the matrix elements x(n,m) with respect to time. 

( ,dx n m ) i2πν (n m t  , )π ν  ( ,n m a  ( , )= 2 i ) n m  e  
dt 

dx n m ( ,  )  
= 2 i ( ,  ) ( ,  )π ν  n m x n m  

dt 
i2πν (n m t  , )where  : x n m  ( ,  )  = a (n m  e  , ) 

Since: 
n mE  ( , )E (n m) = h ( ,  )  ν ( ,,  ν n m  ∴ n m) = 
h 

Then, 

dx n m ( ,  )  E (n m, ) i x n m  (n m) ( ,= 2π i ( ,  )  = E , x n m  )
dt h  

. 
Then, we come to a new matrix X , that is called the quantum mechanical 

equation of motion or Heisenberg equation of motion: 
. 
X = 

i (EX − XE)
 

( ,  n m, )where  : En x  n m  ) = (EX)( 
and : Em x n m ( ,  )  = (XE)( , )n m 

The last two relations are true because E is a diagonal matrix. 
The Heisenberg equation of motion can be written in the form: 
dA i i 

= [H A ] = HA − AH), (
dt   

Where A is the observable and the Hamiltonian H is equivalent to E. In Heisenberg 
equation of motion, the state vectors are time-independent while the operators (and 
observables) are time-dependent. 
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The matrix X is Hermetian because ν(n, m) = –ν(m, n) and a(m, n) = a*(n, m), 
then x(n, m) = x*(m, n). When transposing a Hermetian matrix, each component 
becomes its complex conjugate. Then, the elements of a matrix multiplication XX† 

the elements of the product matrix are: 
2 

a ,(n m  a  ) ( , ) = (n m)a ∗ (n m, ) =m n  a ,  n ma  ( , ) 
Where |a(n, m)|2 is the probability for the transitions between n and m states. Later, 
Born discovered the connection between |Ψ(x)|2 and position probability via a 
quantum electrodynamic argument. 

Born said that “And one morning about 10 July 1925, I suddenly saw the light: 
Heisenberg’s symbolic multiplication was nothing but the matrix calculus well 
known to me since my student days from the lectures of Rosanes in Breslau (…). I 
meant that the two matrix products PQ and QP are not identical. I was familiar with 
the fact that matrix multiplication is not commutative” (Fedak and Prentis 2009). 
Born and Jordan introduced the position and momentum matrices in a similar way as 
described previously for matrix X: 

i2πν (n m t  , )Q = (q (n m  e  ) ), 
i2πν (n m t  , )P = ( p (n m  e  ) ), 

As Fedak and Prentis highlighted: “For Born and Jordan, Q and P do not specify 
the position and (linear) momentum of an electron in an atom. Heisenberg stressed 
that quantum theory should focus only on the observable properties, namely the 
frequency and intensity of the atomic radiation and not the position and period of 
the electron. The quantities Q and P represent position and momentum in the sense 
that Q and P satisfy matrix equations of motion that are identical in the form to those 
satisfied by the position and momentum of classical mechanics (…). In Heisenberg­
Born-Jordan atom there is no longer orbit, but there is some sort of periodic ‘quantum 
motion’ of the electron characterized by the set of frequencies ν(n, m) and amplitudes 
q(n, m). Physicists believed that something inside the atom must vibrate with the 
right frequencies even though they could not visualize what the quantum oscillations 
looked like” (Fedak and Prentis 2009). 

From Hamiltonian matrix, one gets the derivatives of Q and P with respect to 
P and Q, respectively. 
. ∂H 1 2π iQ = = P = [H Q],

∂P m h . ∂H ∂U 2π iP = −  = −  =  [ , ]H P  
∂Q ∂Q h 

And they stated that the diagonal elements H(n, n) of H are the energies of the 
various states of the system. In matrix form, energy of the states of the electron are 
naturally quantized. 
The commutator of P and Q is: 

[P, Q] = (PQ – QP) 



:

: ( )

.

. ..
QQ V

P Q

dand
dt

then m f Q

= =

= =

[ ],
, ,

:

. .

.

P Q
P Q P Q

P VP

d
dt

d dwhere m
dt dt

   = +      

= =
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The differentiation of the commutator with respect to time is: 

P Q  .d [ , ]    . = , + ,P Q  P Q   dt     
. dP dVwhere : P = = m

dt dt
 
. dQ
and : Q = = V

dt . .. 
: P = m Q = ( )then f Q 

where V is the velocity matrix. The last relation above is the Newton’s law in matrix 
form. Let us replace the Newton’s law in the time derivative of the commutator. 

d [P Q] ,  P 
= [ f ( ), ] P,Q Q  +  dt  m  . 

where : Q V= 

and :P = mV 
. Pthen : Q = 

m 
Which yields: 

, P2 2d [P Q] P 
= f ( )  − f ( )  =Q Q  Q  Q  + − 0

dt m m 
Where ƒ(Q) commutes with Q. Consequently, the commutator [P,Q] is a constant 
matrix, i.e., it does not vary with time. In addition, it is a diagonal matrix. 
The Hamiltonian matrix is given by: 

1 2H = P + ( )V Q
2m 

Where V(Q) and Pare the potential energy and the momentum matrices. Since the total .
energy of the system is constant, then H   = 0 and the Hamiltonian matrix is constant 
with time. As a consequence, it must be a diagonal matrix like the commutator [P,Q]. 
Therefore, the diagonal elements of the Hamiltonian matrix, H(i,i) are the constant 
energy of the ith system state, i.e., H(i,i) = E(i). According to the equation: 
. 
X = 

i (EX XE − )
 

We have that: 
. 
Q = 

i (HQ XQ − )
 

where : X Q= 
. 

as : P = mQ 

then : P = 
i m[H Q, ]
 



:
2m n
hthen d d

i iπ
= = =


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Since [V(Q),Q] = 0, we have: 

P = 
i m (HQ − QH)
 

i  1 2   1 2 P m V Q Q  P=  P + ( ) − Q  + V Q( )
  2m   2m 
 

i  1 2 1 2 
 = m ( )  − Q P − ( )P P Q+V Q Q QV Q 
  2m 2m 
 

i  1 2 1 2 
 = m  P Q  − Q P  + [ ( ), ]P V Q Q  
  2m 2m  

[V Q  Q  ), ]( = 0 

i  1 2 1 2  π i 2P = m P Q − Q P = P ,Q    
  2m 2m  h 

The commutator [P2,Q] is: 
2 2 2P ,Q = P Q − QP − PQP + PQP   

P2 ,Q = ( ) ( QP P − ( ) ( + PQ P ) P PQ − ) P QP   
2 P PQ P QP + ) )P ,Q = ( ) − ( ) ( PQ P − (QP P   
2 P  P Q  , P Q  P  ]P ,Q = [ ] [ + ,  

The equation for the momentum matrix can be simplified to: 
π i 2P = P ,Q  h 

P = π i (P  P Q  [ , ] [ P Q  P  ] )+ ,
h 

Since the commutator [P,Q] is a diagonal matrix, let us replace [P,Q] by the 
diagonal matrix D: 

P = π i (PD + DP)
h
 

h
PD + DP = P
π i 

In terms of the components of the above equation, we have: 
h( ,  )  + d  p n m  ) = p n m  )p n m d  m n ( ,  ( ,

π i 
Since p(n, m) ≠ 0 for n ≠ m, we have: 

(dm + d ) ( ,  )  = 
h ( ,n p n m  p n m  )

π i
 
h
dm + dn = 

π i 
as : dm = dn 



( ) ( , ) ( , )

:

m n

m n

m n

hd d p n m p n m
i

hd d
i

as d d

π

π

+ =

+ =

=
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h then : dm = dn = = 
2π i i 

Then, the commutator [P,Q] or the diagonal matrix D is: 
D = [ P Q  , ] = 1
i 

Then, we come to the quantum condition: 

[P , Q ]   =PQ-QP = I = −i I
i
 

1 1  i i i
where : = ⋅ =   2 = = −i
i i i i −1 

and I is the identity matrix. 
On the other hand: 

[ Q P  , ] = iI

4.  Born, Heisenberg and Jordan (third work of matrix mechanics) 
The canonical transformation is used in classical mechanics to change variables q  
and p into Q and P, respectively. In the third work of Matrix mechanics (Born et al. 
1925), it was used the canonical transformation of the variables p, q to yield new 
variables P, Q where the following relation must be respected: 

h pq − qp = PQ − QP = 
2π i 

The applied canonical transformation in matrix mechanics is: 

P = SpS−1 

Q = SqS−1 

~ ~ 
where : SS * =1, S( nm) = S(mn ) 

Where S is an arbitrary Hermite transformation matrix and the above equation 
represents the most general canonical transformation. 

Now, we seek for a transformation matrix S that gives a new Hamiltonian matrix 
H(P,Q) from H(p,q): 

H(P,Q) = SH(p,q)S−1 

If the new H(P,Q) is a diagonal matrix E: 

SH  ( ,  p q S  ) −1 = E

Then, we obtain the energy of the system. The above equation is analogue to the 
Hamilton-Jacobi equation (see Chapter ten). As a consequence, we have: 

E n( ), n = m
E (nm ) =  

 0, n m≠
 

En − Eν (nm) = m


h 
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On multiplying behind the above equation by S we obtain the relation: 

SH( ,  p q S  )  −1 S  = ES  , S−1S  =
 I  
then :  SH( ,p q )  = ES


Now, we see one application of the matrix mechanics for the case of the Planck’s 
oscillator where the Hamiltonian function is: 

1 1H = p2 + kq 2 

2m0 2 
From the Hamiltonian equations: 
F = −kq  = ma 

dq . . pp = m = m q  ∴ =q
dt m 

. .. d . 1 dp pa q= = q = = 
dt m dt m 

dp .
F = ma = = p

dt 
dp .

= p = − kq 
dt 

. .. p kq q = = − 
m m 

.. k q+  q = 0 
m 

k k ω = 2πν = ∴ = (2πν )2 

m m 

We obtain the equation: 
..
 
q+ (2  πν )2 q = 0
 

And the Hamiltonian function can be written as: 

1  . 
2 1 H =  m q  + (2πν ) 2 m q2
 2m0 

0  0
 2
 

.
m0 2 1 H = q + (2πν 2
 ) m q2

2 2 0 

Note that the linear momentum in the matrix mechanics is depicted below. The proof 
for this equation is at the beginning of the Section 3. 

p = m
.
 

 0 q = (m 0 2 π νi (   nm )q (  nm ))

Then, from the quantum condition: 

ih qp − pq  = I
2π 
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We obtain its diagonal elements as: 

q nk m ( ) 0 2π νi (  ) (  kn q kn ) − ih∑  = 
−m0 2 i nk q nk q nk  2πk π ν ( ) ( ) ( )  

where ν: (kn ) = − ν (nk ) 
2and : q nk q kn (  ) (  )  = ( )q kn 

2 ih
−∑4m0π νi (nk ) ( )q kn =
 

k 2π
 
2 hthen : ∑ν (nk ) ( )q kn = − 2 

k 8π m0 

The Hamiltonian matrix H becomes: 

2 ) (km q km ) + −ν (nk q nk ) (  ν ) (   
H =  2π m   0 ∑ 

k ν 2 (  ) (  q nk  q km  )  0  

The energy E(n) of the nth stationary state is H(nn) which are diagonal elements 
of H (a diagonal matrix). 

22 2 2E n = H(nn) = 2 m { 0 +ν nk }( )  π 0 ∑ ν ( )  ( )q nk 
k 

Further development using the above equation and the equations below: 
..
 
q+ (2πν )2 q = 0
 

2 h∑ν (nk ) ( )q kn = − 2
 
k 8π m0
 

Yields the solution (Birtwistle 1928): 

ν  1 En = H( )  0  + nn = h n
 
 2 
 

In Schrödinger’s words about the matrix mechanics: “Heisenberg’s theory 
connects the solution of a problem in quantum mechanics with the solution of a 
system of an infinite number of algebraic equations, in which the unknown—infinite 
matrices—are allied to the classical position and momentum coordinates of the 
mechanical system, and functions of these, and obey peculiar calculating rules” 
(Schrödinger 1926). 

Important to add that Pauli also gave an important contribution to the matrix 
mechanics with the study of the hydrogen spectrum where the influence of external 
electric and magnetic fields were analyzed from the point of view the matrix 
mechanics (Pauli 1926). He found the correct energy spectrum of the hydrogen atom 
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as well as the correct Stark effect corrections to the energy. Curiously, in this work 
Pauli used a new commutator, the [E,x] commutator: 

 . 
EX − XE = X

i 
. 
X = 

dX , H( , )  = E (diagonalmatrix )p q 
dt 

5. Dirac’s complementation to the matrix mechanics 
From the classical dynamics when x and y are functions of the coordinates and linear 
momentum, respectively, the expression: 

∑ 
k 


 ∂ ∂ x y 

−
x y 




= [ ] xy ∂ ∂
 

∂ ∂q p p q
 ∂ ∂ 1  k k k k  
Where [xy] is the Poisson bracket, gives the following relations: 

 r s= [ ] [ ] [ ]=	 q q  0, q p  =
 

1, 
≠

p p  0, = r s r s r r 0, r s  

After some derivation of the Poisson bracket relations, Dirac found the 
commutation relation for the two quantum magnitudes x and y: 

xy − yx = 
i [ ] xy 
2π 

Then, Dirac arrived at the relations below known as Dirac-Heisenberg rules for 
q’s and p’s (Dirac 1925). 
p p  − p p 	  = 0r s  s r  

r − q q  s r  = 0q  q  s 

 i
 , r s= 

q p  − p q  =r s  s r 	  2π
 
 0, r s≠
 

6. Vector states and expectation value 
An expectation value 〈A〉 of the observable A is the mean value of a series of the 
specific measurements of the quantum state vector. The quantum state vector provides 
a probability distribution for the outcomes of each measurement of a particle. There 
is no state which is simultaneously an eigenstate for all observables. 

The state vector depends on the observable to be measured. For example, for 
the energy of the electron in hydrogen atom, the state vector is identified by four 
quantum numbers (n, l, m, s). When the spin of the electron is measured in any 
direction, there are two possible results: up (α) and down (β) which are represented 
by a two-dimensional complex vector (α, β). 
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Usually, a system is made up with a superposition of multiple different 
eigenstates which have a quantum uncertainty for a given observable and the vector 
state, ε, is represented by a linear combination of eigenstates ciei. Each ciei describes 
the possibility of measurement related to the observable A to give the eigenvalue ai. 
ε = ∑c ei i  

i 

If ε and ei are normalized, the product c* c  2
i i = |ci | is the probability that the 

measurement gives the eigenvalue ai, as stated by Born. 

Probability density : c c  * = c2
i i  i  

∑c c  * 
i i =
  1

i
 

The measured mean value or the expectation value is: 

A = ∑c  *c a  †
i  i i  = ε Aε

i
 

While the state of a particle is described by a vector, the state of an ensemble of 
particles is best described by density matrix, D. 

D = εε † = ∑ ∑c e  c* e  Ti i  j j  
i j 

The trace of the density matrix is: 

trace ( )  D = ∑ c 2i
 =1
i
 

The square of the density matrix equals the density matrix: 

D 2 = εε †εε † ∴ε †ε =1
D2 = εε † = D 
The expectation value can be given from the trace of the matrix product DA. 

A = trace (DA) 

7.  Matrix mechanics solution to the one-particle harmonic 
oscillator 

The wave mechanics solution to the problem of one particle harmonic oscillator was 
already given in Chapter four and partially in Section 4. Here we focus on its solution 
using another approach of the quantum matrix mechanics. 

One particle oscillator is under the restoring force from Hooke’s law which is 
equivalent to Newton’s law of the force. 

d x  2

m 2 = −kx 
dt 
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Where the particle of mass m attached to a spring with elastic constant k moves in 
the x-axis. The solution for this problem was given in Chapter 4 and the equation of 
motion of this problem is given below 

d x  2 k  
2 = − x

dt m 
solution : x(t ) = x m cos (ωt ) + x m sin (ωt ) 

kwhere :ω = 
m 

And ω is the angular frequency. The Hamiltonian function for this system is: 

dE ( )x 
 F = − p , E = − Fdx 

dx p ∫
 
1E p = − −∫ ( kx ) dx = kx 2


2 
k ω = , k = ω 2m 
m 

m . 
2  mH = x + ω 2 2

0 x2 2
 
.
 

p = m x  
1 2 m H = p + ω 2 2

m 2 0 x2
The above equation can be modified to: 

 1 m 
H = ω 2 

0  p2 + ω
2mω 2 0 x 

 0  

 1 2 mω 
In matrix form: H = ω 0  P + 0 X2 


 2mω 0 2   

1where, for simplicity, we state that: P  = P , P = 2mω P
2mω 0 

0 

mω 2
 0 and : X = X , X = X

2 mω0 

H  2 


2
= ω0 (P + X )

Let us define the matrix A and its transpose: 

A X  =  + iP

A † = X P   − i 
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And the commutative relation between them is: 

 A, A †  = AA † − A†
  A

 A, A  †  =  + P X   )( − (X i   iP ) − ( X  − i P X )(  + iP )
(X  +  )  )  2  2 

=   iP (X  − iP  X + P  − i (XP   − PX ) 
(X  −   

2  2   iP)(X + iP ) = X  + P  − i (PX  − XP  ) 
 † −A, A   = i (XP   −   PX) + i (PX  − XP  )


†  mω  

0 1   1  mω  
A A,  = −  i   X P  −  P  0 X  + 2     2m  m ω ω   2  

0   0  2 
 

 1  mω   mω  1 
 
+i   P  0 X  −  0 X P  2mω  2   2   0   mω 

    2 0  


†  mω   mω 

 A, A  = − i  0 XP − 0 PX + 2   
4 mω      4 2 mω 


  0   0 

 mω   
0 mω 
 

+i   2 PX  −  0 XP    2 
ω 


   4 m 0  4 mω   0 

†  mω   m 

 0 
A, A  = − i  2 ( −  XP PX) ω

 + i  
0 (PX − 2 XP)4 mω0 4 mω   0  

† i i  A, A   = − P − ( XP − X ) + (PX  XP)
2 2 

where : XP − PX  = iI 
And : PX − XP =  −iI 

Then A A  † i i:  ,  = −  (iI) + ( −iI  ) = I
2 2 

As we have seen in the derivation of the above commutative relation, we have: 
1A† A =  

2
 X + P  

2 
 2 2

− i (PX  − XP ) = X + P  − I
2 

† 1Then : X 
2 
 2+ P = A A + I

2 
Let us substitute the above equation in the Hamiltonian matrix equation: 

H = ω ( P 2 + X 
2  

0 ) 1  = ω †
0  A A + I 
 2  
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The commutation relation between H and A is: 

  † 1   † 1 [H A  ] = ω0  A A  + I  A − Aω0  A A  + I ,	 
  2   2 
 

  † 1   † 1 
[H A ] = ω0  A AA + A  − ω0  AA A + A , 
  2   2  

† † †[ ,	 ] = ω0A A A  ,  = ω0 A  AA  − ω0 AA  A  H A   

, = ω A† ,H A   A A  [ ] 0   

:  , †  = IAs A A 
 

:  † ,  = − I
Then A A  

[H A  ] = − ω0, A 

In a similar algebraic procedure, we find that the commutation relation between 
H and AT is: 

, †  = ω A†H A  	  0 

Since we have to find the eigenvalues, λ, and the eigenvectors, e, for this 
problem, we use the following equation: 

He = λe 

Let us multiply [ , ] = −ω0 A by the eigenvector e from the right:H A  

[ ,	 ] = − ω0AeH A e 
HAe − AHe = −  ω0 Ae 
HAe = AHe − ω0Ae
 

And now, since He = λe we have:
 
HAe = AHe − ω0Ae 
HAe = Aλe − ω0Ae 
HAe = (λ − ω0 ) Ae 

Let us multiply [H A e ] 0 by Ae from the right:, = −ω Ae

(HA − ) = −  ω AAeAH Ae 0
 

2 2
HA e − AHAe = −  ω0 A e 
2	 2HA e = AHAe − ω0 A e 
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Let us multiply HAe = (λ − ω0 ) Ae by A from the left: 

AHAe = A (λ − ω0 ) Ae 

AHAe = (λ − ω 2
0 ) A e 

Let us replace the above equation in HA 2e = AHAe − ω 2
0A e , then we have: 

HA 2e = AHAe − ω 2
0A e 

H  A e  2 = (λ − ω 2  ω 2
0 ) A e  − 0A e  

HA e  2 = (λ − 2ω ) A e2 
0 

From the last operations above, we have three eigenvalue equations: 
He = λe 
HAe = (λ − ω0 ) Ae 

HA e  2 = (λ − 2ω 0 ) A e2 

Each product of the He = λe by A gives a h–ω0  reduction of the eigenvalue of H, 
but it can never be negative (there is no state with energy lower than zero) and it has 
to end at some point before becoming negative. The matrix A is called annihilation 
operator.  At this point, we establish that we will have the eigenvector e0 where  
Ae0 = 0. In this case, we have: 

 1 As : H = ω 0  A A  † + I 
 2 
 

 1  1
He  0 =  ω
† †

0A A  + ω 0 I  e0 = ω0 A Ae  0 + ω e 
 2  2 0 0  

where : Ae0 = 0 
1Then : He 0 = ω e
2 0 0  

By multiplying  H, A  †  = ω †
     0 A with e0 from the right, we have: 

H, A  †  = ω † 
  0A

HA †e 0 − A  † He = ω A†
0 0 e 0 

1where : He0 = ω
2 0 0e

† 1 then : HA e  0  −  ω 0 0  e = ω A e†

2 0 0

 1  HA e  † = ω 1+ A e†
0 0   


0

 2  
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If we multiply , †  = ω A†  with the new eigenvector Aǂe0 from the right, gives:H A    0 

† † † † † †HA e A  − A He A  = ω A e A  0 0 0 0 

† † † †( )2 
e − A HA e  = ω A )2 

eH A  (0 0 0 0 

†  1  †where : HA e  = ω 1+ A e0 0   0
 2  

† †  1  † †then : H A  ( )2 
e − A ω 1+ A e  = ω (A )2 

e0 0   0 0 0
 2 
 

2  1  † 2 † 2

H A  † e − ω 1+ A e = ω A e( ) 0  ( ) 0 ( )0  0 0

 2  

† 2  21  †H A  e  = ω 2 + A e( ) 0  2 ( )0  0
  

From the last operations above, we have three eigenvalue equations: 

1He0 = ω0 0e
2 

†  1  †HA e  = ω 1+ A e0 0   0
 2  

† 2  21  †H A  e  = ω 2 + A e( ) 0  ( )0  0
 2  

Then, we see that each product of the He = λe by Aǂ gives a h–ω0 increment of the 
eigenvalue of H. The matrix Aǂ is called creation operator. The annihilation and 
creation operators are collectively known as ladder operators. 
As a general result from the operations above, we have: 

He j = ω0 

 j + 

1 
e j

 2  
†where : e j = (A ) j e0 

and : j = 0,1, 2,3,... 

Then, the energy of the one-particle harmonic oscillator is: 

 1 E j = ω0  j +  , j = 0,1, 2,... 
 2  

1for : j = 0 :  E0 = ω02 
In Chapter fourteen, we see an alternative solution for the one-particle harmonic 

oscillator using the wave quantum mechanics. 
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8.  Classical angular momentum: definition 
The classical definition of the angular momentum, L, is the vector cross product 
of the Cartesian coordinates (x, y, z) ≡ r (the position vector) and their conjugate 
momenta (px, py, pz) = p. It is the rotational equivalent of the linear momentum. The 
angular momentum is orthogonal to the plane (x,y) containing the vectors r and p 
(See Fig. 8.1). 

L = r × p 

The angular momentum vector points in a direction that is perpendicular to the 
plane containing r and p, and L has a magnitude: 

L = rp sin α 

Where α is the angle between the vectors r and p. 
Both linear momentum and angular momentum are conserved quantities, i.e., 

their total values remain constant in a closed system. The gyroscope is an example of 
conservation of the angular momentum. It remains upright while spinning because of 
the conservation of its angular momentum. 
In Cartesian coordinates, the components of the angular momentum are: 

 y z   x z   x y 
L =   i −   j +   k 

 py p z   px pz   px py  
L x = yp z − zp y 

L y = zp x − xp z 

L z = xp y − yp x 

These components are obtained from the determinant form of the vector product: 
L = r ×p 

i j k 
L = x y z 

p x p y p z

The classic angular momentum can be measured by means the moment of 
inertia, I, which is a measure of the resistance of an object to be accelerated in its 

Fig. 8.1: Schematic representation of the vector of the classic angular momentum. 
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circular motion.  The angular momentum is the scalar product of moment of inertia 
and angular velocity. 

L = I . ω 

The relation between the angular momentum and the kinetic energy, T, is given 
below: 

mv ω)2 2 m r( mr 2ω 2

T = = = 
2 2 2 

I = mr 2 

Iω 2Iω 2 

then :T = 
2 

L I= ω
multiply : I I 

Iω 2 I T = 
2 I 

I 2ω 2 L2

then :T = = 
2I 2I 

9.  Quantum angular momentum 
The quantum angular momentum components are obtained by replacing the classical 
operators of position and linear momentum by their corresponding quantum 
counterparts (see Chapter ten for the derivation of the quantum linear momentum 
operator). 
px = −i (∂ ∂ x ) , p y = −i (∂ ∂ y ) , pz = −i (∂ ∂ z ) 
L x = −i ( y ∂ ∂ z − z  ∂ ∂ y  )
L y = −i z   ( ∂ ∂ x − x  ∂ ∂ z  )
L   z = −i x   ( ∂ ∂ y − y  ∂ ∂ x  )

The square angular momentum,  L2, is another important operator in quantum 
mechanics. 

L2 = L2 2 
x +L y +L2

z 

The commutative properties of the quantum angular momentum are: 
L L2 ,  = 0,   L L2
 x   , y  = 0,  L L2 ,  =  z  0

 2 ,  =L L 0

L , L   = iL ,  x y  z  L y , L z   = iL , L L, = x [ z x ] iL y 
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Let us firstly derive the commutative relation between Lx and Ly is: 

Lx ,L  = L L  − y x y x y L L   
 

L ,L  = (yp − zp )(zp − xp ) ( − zp − xp )(yp − zp )
 x y  z y x z x z z y 

L ,L  = yp zp − yp xp − zp zp + zp xp  x y  z x z z y x y z 

−zp yp + zp zp + xp yp − xp zp x z x y z z z y 

Since: 
yp xp = xp yp z zz z 

and : zp zp = zp zp x y y z 

We have: 
L ,L  = (yp zp − zp yp ) + (zp xp − xp zp ) x y  z x x z y z z y 

L , L  = yp , zp + zp , xp  x y  [ z x ]  y z  

From the commutator’s identity (see Chapter three): 

, = A B C D , + A C BD + ,, CA B D + ,AB CD C A D B [ ] [ ] [ ] [ ] [ ] 
we have: 

yp , zp = y p , z p + y z p p + zy p , z y p p[ x ] [ ] x [ , ] x [ px ]+ [ , ] zz z z z x 

0,[ 0,[y p  = 0where : [y z  , ] = p ,p ] = , ]z x x 

y p z p  then : [yp zp  z , x ] = [ z , ] x 

 z x p p zzp y , xp z  = z p y , x p z + [ , ] y z  + xz p y ,p z  + x z p [ , ]p y      

where p , x = 0, [ , ] = 0, p ,: z x  p   = 0 y   y z  

then : zp , xp  = x z p  y z  [ , z ]p y 

hence : L ,L  = y p  , z p  ] + , ]p y x y  [ z x x z p  [ z 

From the commutators obtained from the matrix mechanics: 

[P Q] iI, = − 

[Q P] = i, I 

we have: 

L ,L  = −  iyp + ixp = i yp + xp x y  x y ( x y ) 
[z p  = iwhere :[p z , z] = −  i, , z ]  

L L ythen : x ,  = iL z 

The other commutators (see below) are obtained similarly: 

,  = iLL L y z  x 

[L Lz , ] = iL yx 
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Now, let us derive the commutative property between the square angular 
momentum, L2, and L . The commutator is: x

[L2, L ] = 0x

We use the equation of the square angular momentum: 
2 2 2 2 , = L L ,L L     +  +  L L   x    x y z x  

From the commutator identity (see Chapter three): 

A  B C  + ,+ , = A C  , B C[ ] [ ] [ ] 
We obtain: 

2 2 2 2 , = ,  L L  + , L L     L L  + ,  L L   x    x x   y x   z x  

The first commutator on the right side of the above equation is zero: 
2 2 2 ,  = L L  − L L  = L L L  − L L L  = 0L L   x x  x x x x x x x x x x 

Then, we have: 
2 2 2      + ,L L, = L L  , L L   x    y x   z x  
2 2 2 2 2 , = L L  − L L  + L L  L L   − L L x  y x x y z x x z 

 2 , = L L L  − L L L  + L L LL L   − L L L   x  y y x x y y z z x x z z 

Let us find the commutators [L , L ] L  and L [Ly, L ] and their sum:y x y y x

,  L = L L  − L L  L  = L L L  − L L L  L L   y x  y ( y x x y ) y y x y x y y 

L L L   = ( − L L  ) = L L L  − L L L  , L  L L  y  y x  y y x x y y y x y x y 

L L  ,  L + L  ,  = L L L  −L  L  L L L  + y x  y y  y x  y x y x y y 

+L L L  − L L L  = L L L  − L L L  y y x y x y y y x x y y 

In the same way we have for [L , L ] L  and L [Lz, L ] and their sum:z x z z x

[L L  L  ] = L L  − ) = L L L  − L L L  , ( L L  L  z x z z x x z z z x z x z z 

, = L  L L  − L L  = L L LL L L  − L L L  z [ z x ] z ( z x x z ) z z x z x z 

[ , ] + L L L  , ] = L L L  − L L L  +L L  L  [z x z z z x z x z x z z 

+L L L  − L L L  = L L L  − L L L  z z x z x z z z x x z z 

Thus, the relation: 

 2 , = L L L  − L L L  + L L LL L   − L L L   x  y y x x y y z z x x z z 

Becomes: 

 2 , L L  L   L L  L  [ ,L L     = ,  + L  L L   , +[ , ] + L  L L  ] x   y x  y y  y x  z x z z z x 

L L  = −iL , [L L ] ,  , = i L y x  z z x y 

 2 ,  = −i L L  − iL L  + iL L  + iL L  = 0L L   x  z y y z y z z y 
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Similar derivations can be used to demonstrate that L2 commutates with Ly and Lz. 
Further information about quantum angular momentum is given in chapter 

sixteen. 

10. Exercises 

(1) Demonstrate that a diagonalization process is equivalent to the eigenvalue 
problem, where A is the linear transformation operator, P is the eigenvector and 
D is the diagonal matrix. 

P−1AP = ⇒  APD = PD 

λ1 0  V1 W1 D =   , P =   = [V W]
 0 λ2  V2 W2  

V     1 W1V = , W =      V W 2 2   

AP = A V [ W] [ AV AW]= 

V W  λ 0    λV λ W 1  1 1  1 1 2 1PD = =       V W 0 λ λV λ W 2 2   2    1 2  2 2  
 

λ 0 V W λV λ W
 1   1 1    1 1  2 1  DP = =      
 0 λ2  V2 W2    λ1 2V λ2W2  

then : PD = DP 
AP = PD ⇒ AP = DP 
A V W  [ ] [ D V W  = ] 
(2) The 3 × 3 matrix T is a linear transformation operator and X is the eigenvector. 

Find the corresponding eigenvalues. 

1 0 0 
 
 
T = 0 1 2 
 0 2 1  

TX = λX (T λ )⇒ −  I X = 0 

Then : det (T − λI) = 0 

1 0 0    1 0 0   1− λ 0 0   
       0 1 2 − λ 0 1 0  = 0 1− λ 2       
        − 0 2 1  0 0 1  0 2 1  λ         

1− λ 0 0 
 
 
det 0 1− λ 2 = 0 

 0 2 1− λ 

 

S {1, 1,3 }= − 



 

 (3)  Obtain the commutation relations: 

L L,  =   y z  iLx 

[L Lz , x ] = iL y 

 (4)  By knowing that the square angular momentum is: 

L L2 = 2 + L2 
x y + L2

z 

Show that L2 commutates with L. 
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Wave Packet and 
de Broglie’s Wave-particle 9Duality 

1. Double-slit experiment 
The debate about the nature of the light began in 1670 when Issac Newton stated that 
light was a collection of corpuscles while Christian Huygens stated it was a wave. 
In 1804, Thomas Young proved the wave-like nature of light by means of the double 
slit interference experiment whose pictorial representation can be seen in Fig. 9.1 
(Young 1804). At the positions marked “Max” on the screen, the meeting waves are 
in-phase and the combined wave has enhanced amplitude. At the positions marked 
“Min”, the combined wave amplitude is zero. 

In 1927, Davisson and Germer were the first to prove the wave-like nature of 
electrons by an accidental discovery of the diffraction of the electrons (Davisson and 
Germer 1927). As stated by them: “These results are highly suggestive, of course, 
of the ideas underlying the theory of wave mechanics and we naturally inquire if the 
wave-length of the X-ray beam which we thus associate with a beam of electrons is 
in fact the h/mv of L. de Broglie” (Davisson and Germer 1927). 

In 1961, in an experiment analogous to Young’s experiment, Jönsson obtained 
the electron diffraction and interference phenomenon similarly to a wave, proving 

Fig. 9.1: Pictorial representation of Young’s double slit experiment of light. 
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the wave-particle nature of the electron (Jönsson 1961). Since then, the particle 
interference has been demonstrated with neutrons, atoms and molecules, for instance, 
C60 molecules (Arndt 1999). 

2.  Special theory of relativity 
The special theory of relativity has two postulates: (1) the laws of electrodynamics 
and optics are invariant in all inertial frames of reference, i.e., they are valid for 
all references in which the mechanics equations are valid; and (2) light always 
propagates in the empty space with a definite velocity c independently of the state 
of motion of the emitting body or observer (the constancy of the speed of light).The 
two postulates of special relativity predict the equivalence of mass (or rest mass) and 
energy (or rest energy): 

E = mc2 

Where c is the speed of light. 
In special theory of relativity, time and space cannot be treated separately as 

was previously thought to be the case. The space and time form the four-dimensional 
spacetime. In order to satisfy the second postulate of Einstein’s special theory of 
relativity, Lorentz transformation is applied. 

In special relativity, an event is defined in two frames: (1) the rest frame with 
spacetime coordinates (t,x,y,z); and (2) a reference frame moving at a velocity v with 
respect to the first frame with spacetime coordinates (t’,x’,y’,z’). Then, the Lorentz 
transformation is a linear transformation of spacetime coordinates which relates the 
three spatial coordinates and time of the same event in two frames, S and S’, where 
S’ moves with velocity v with respect to S along x-axis. 

x ' = γ (x − vt ) 1 v , γ  = , β  =
1− β 2 c 

y ' = y 
z ' = z 

 vx t ' = γ  t − 2  c  
Where γ is the Lorentz factor. 

The rest mass (invariant mass or intrinsic mass), m0, is the total mass of a body 
that is independent of the overall motion of the system and it is a characteristic of 
the system’s total energy and momentum that is the same in the rest frame (S). The 
rest mass is the Newtonian mass as measured by an observer moving along with the 
object. For the other reference frames where the system’s momentum is nonzero, the 
total mass (i.e., the relativistic mass, mrel) is greater than the rest mass: 

mm = 0
rel 

 v 2 

1− 
 c  
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In the center of momentum frame (where v = 0), the relativistic mass equals the 
rest mass. The relativistic mass depends on the observer’s frame of reference. As a 
consequence, the momentum and the energy at the primed frame (S’) are: 

m v  m c  2

p ' =	 0 , E ' = 0
 

 v 2 
 v 2
 

1−   1− 
 c	  c

By combining the expression for the momentum at the primed frame, the rest 
energy and the energy at the primed frame, we have: 

E2 = p2c2 + m2  4 
0 c

3.  Waves 
A periodic wave is a wave with a repeating, continuous pattern. The sine and cosine 
waves are examples of periodic waves. For periodic waves, the frequency, ν, has an 
inverse relation with the wavelength, λ: 

Vν = 
λ 

Where V is the phase velocity of the wave. For the special case of electromagnetic 
waves moving in the vacuum, the speed of light, c, is its phase velocity. 

ν =
c 

light  
λ 

The phase velocity is the rate at which an individual wave propagates in some 
medium. The phase velocity can be understood as the ratio between the wavelength 
and the time period, T. 

λV = 
T 
The phase velocity can also be given in terms of the angular frequency, ω, and 

the wavenumber, k, as: 
ωV = , ω = 2πν 
k 

The wavenumber is the number of radians per unit distance: 
2πk = 
λ 

Sine and cosine waves are example of periodic waves. The general formula of 
a sine wave is: 

y x  ( ) = Asin (2 πν x +ϕ ) , 1λ = 2π 

 2π x	  or : y(x ) = A sin  +ϕ
 
 λ 
 

 



 

  

  2π x 	  2 ( x − 2) πFig. 9.2: Plot of (A) cosine wave y x( ) = 5cos  ; (B) cosine wave ( ) = 5cos  .y x
 5 	  5  
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Where 2π is a complete cycle that corresponds to the wavelength, A is the amplitude 
of the wave and ϕ is the phase constant that specifies (in radians) where in its cycle 
the oscillation is at x = 0. 

The cosine wave is nearly identical to sine wave except that each point on the 
cosine wave occurs ¼ cycle earlier than that from sine wave. 
The number of waves, nx, and phase of wave at a given x,ϕx, are: 

x 
=nx λ 

ϕx = 2π nx 

Let a cosine wave be the one represented in Fig. 9.2(A) whose equation is given 
below: 

 2π x  y x( ) = Acos  

 λ 
 

 2π x 5, λ = 5, y x  = 5cos A = ( ) 	   

 5 
 

If this wave moves without distortion in the positive direction of the x-axis for a 
quantity x0, it becomes the dotted-line wave in Fig. 9.2(B): 

 2 (x x0 ) π −( ) = Acos y x   
 λ 
 

 2π (x − 2) 
 x0 = 2, A = 5, λ = 5, ( )  y x  = 5cos 
 5  

This second wave is 2 units of x ahead from the first wave and it can be 
understood as an example of travelling wave if: 

x0 = Vt = 2 

The travelling wave moves at constant phase velocity in the x-axis where the 
following general property is respected: 

= (  , )  y x( −Vt  t  , )  y x t  

That is, each (x – Vt,t) point is equal to (x,t) point (See Fig. 9.3). 
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Fig. 9.3: Example of a travelling wave. 

The travelling wave has the following general equation: 

y (x, t ) = cos (kx −ωt )
A travelling wave can be represented using Euler’s formula: 

y (x, t ) = cos (kx −ωt ) + i ( i sin (kx −ωt ) =  kx −ωt ) e 

The Euler’s formula was derived in chapter two as: 

eix = cos x + isin x 

The composite wave is the sum (or superposition) of two or more periodic 
waves. In Fig. 9.4(A) there appears two different waves: y(x) = 5 sin(x) and 

 + (π  3)). In Fig. 9.4(B), it is depicted the corresponding composite 
in( x ) + 4cos (2 x + (π  3)), as a sum of the two waves of Fig. 9.4(A). 
ation for a composite wave is given below: 
x  i −ωi t )

wave is represented by Euler’s formula. 
ude of a composite wave is not constant. The envelope of a wave 
aphically the variation of the amplitude with respect to any variable 

y x  ( ) = 4cos (2 x
wave, y x  ( ) = 5s
The general equ

n 

y( )  x  =∑ Ae i( ki
 
i=1
 

Where each ith 
The amplit

can describe gr
(space, time or angle). The envelope of a wave is an imaginary smooth curve 
outlining its upper and lower extremes. The sine and cosine waves of Fig. 9.4(A) 
have straight, horizontal envelopes while their composite wave has upper and lower 
curved envelopes. 

The group velocity, U, is defined as the derivation of the angular frequency with 
respect to k. 

∂ωU = 
∂k 



 

 

  
 

 Fig. 9.4: (A) Plot of two waves: y(x) = 5 sin (x) and y(x) = 4 cos(2x + (π/3)); (B) composite wave 
( ) = 5sin( ) x + 4cos 2 ( x + (π 3)) .y x  
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The group velocity is the velocity of the overall envelope of the composite wave. 
The relation between phase velocity and group velocity is: 

dVU V  + k= 
dk 

The above relation is obtained from the differentiation of the equation of the 
phase velocity with respect to k. 

ωV = 
k 

then :ω = Vk 
dω dV 

= V k+
dk dk
 

dω
: =as U 
dk
 

dV
then U : = V + k 
dk 

If the angular velocity is directly proportional to the wavenumber, the group 
velocity is equal to the phase velocity. It is the case of a non-dispersive wave. If the 
angular velocity is a linear function of the wavenumber (ω = ak + b), the envelope of 
the composite wave will travel at a single group velocity and the individual peaks and 
troughs will travel at the phase velocity. If the angular velocity is not a linear function 
of the wavenumber, the envelope of the composite wave will become distorted as 
it travels because the envelope will move at a single velocity, i.e., its wavenumber 
components (ki) move at different velocities, distorting the envelope. 

The wave packet is a composite wave which exhibits characteristic groups or 
packets. In Fig. 9.5(A) there is a composite wave (or wave packet) with three k values 
(k1 = 0.95, k2 = 1.0 and k3 = 1.05), represented by y(x) = 10 sin(0.95x) + 10 sin(x) + 
10 sin(1.05x), where one can see two different packets (a smaller packet between 
two large packets). In Fig. 9.5(B), there is a wave packet with five waves (k1 = 0.95, 
k2 = 0.975, k3 = 1.0, k4 = 1.25 and k5 = 1.05), represented by y(x) = 10 sin(0.95x) + 



 

  

256 Quantum Mechanics: Detailed Historical, Mathematical and Computational Approaches 

Fig. 9.5: (A) wave packet y(x) = 10 sin(0.95x) + 10 sin(x) + 10 sin(1.05x); (B) wave packet 
y(x) = 10 sin(0.95x) + 10 sin(0.975x) + 10 sin(x) + 10 sin(1.025x) + 10 sin(1.05x). 

10 sin(0.975x) + 10 sin(x) + 10 sin(1.025x) + 10 sin(1.05x), where there are three 
small packets between two large packets. 

We can continue adding more and more waves and the distance between the 
large packets will further increase. However, the central packet (around x = 0) does 
not move. So, if the number of waves goes to infinity, only the central packet will 
remain. Then, by superposing an infinite number of constituent waves, we obtain a 
single wave packet. The single wave packet is represented by an integral instead of 
a sum. 

1 ∞ 

y( )  x = 
π ∫ Ae i  ( k x  i −ωit )

i dk
2 −∞ 

4.  De Broglie’s work 
De Broglie proposed the wave-particle duality of the electron based on the quantum 
theory (Bohr’s model and Einstein quantization hypothesis) and the special theory 
of relativity. 

Before de Broglie, Einstein proposed the wave-particle duality of light (the light 
quanta). De Broglie assumed that in the wave-particle theory of light each photon 
is characterized by a distinctive frequency and that this theory needs the relativistic 
treatment since photons are travelling at the light speed. De Broglie began his 1924’s 
paper citing Einstein and Compton: “The photoelectric effect, which is the chief 
mechanism of energy exchange between radiation and matter, seems with increasing 
probability to be always governed by Einstein’s photoelectric law. Experiments on 
the photographic actions, the recent results of A.H. Compton on the change in wave­
length of scattered X-rays, would be very difficult to explain without using the notion 
of the light quantum” (De Broglie 1924). 

De Broglie proposed the matter waves where the mass m is corrected according 
to the equation from special relativity where he used V to represent the phase velocity 
[cms–1] of the propagating waves. The phase velocity can be expressed in terms of 
the wavelength λ and the frequency ν. 

V = λν 
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De Broglie assumed that quanta are indivisible particles of light with rest mass 
different from zero and that all quanta are identical at rest. Then, he related both 
Einstein’s equations of energy, E, and the rest mass: 
E h= ν

E = mc2 

m m = 0 

1 − β 2 

m c2 

h  ν = 0 , β = U c  
1 − β 2 

By squaring both sides of the last equation, he obtained the group velocity U as: 

m c  2 4  2 4 
  
0 2 2 m c  0 2 2

U 2 = h ν , 2 2 = h ν
c −U1− 

c2 c 2

m c  2 6  
0 2 2

2 = 2 h ν 
c −U 

m c2 6

then : U = c 2 − 0

h 2 2ν 
According to the above equation, the greater the frequency of radiation, the 

greater its speed. 
By establishing that V is close to c, de Broglie arrived to the relation: 

m c  2 4  
0 1 m c2 4

 β =  1 −  1
h2 2 − 0 

 1
ν 2 h 2 2ν 

Where he concluded that the rest mass of the photons has to be very small, at most of 
the order of 10–50 g. However, it is well known nowadays that photons have no mass. 

Prior to de Broglie’s work, the equation E = hν  had only been applied to energy 
differences and not to rest mass energy. De Broglie then established the relation 
between the rest energy from Einstein’s quantum theory and Einstein’s special 
relativity in the rest frame S: 

hv0 = m0c2 

Then, the light atom (or photon) has an oscillatory motion whose frequency can 
be related to its rest mass: 

1ν = m c2 
0 h 0 

De Broglie considered a moving particle of rest mass m0, for example, an 
electron travelling a circular orbit with group velocity U: 

U = βc, β < 1 

having an internal energy m0c2 which is ascribed to a periodical phenomenon of 
frequency ν0 within the frame S. In this statement, the particle is not associated with 
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a single wave, but with a group of waves of similar frequencies. The derivation of 
the last equation is given ahead. 

This internal frequency (or beat frequency)is transformed according to Lorentz 
transformation into: 

ν ' = ν 0 1 − β 2

This is obtained from: 
ν ν 2 ν 2 

ν = 0 →ν 2 =  0 =  0

1− β 2 1− β 2  c2 
 1− 2 
 V  

Since : V = λν 

V 2  c 2 
 2

2  1− 2  =νλ V 0
  

Then : V 2  = c2 +ν λ 2 2
0 

Finally, the internal frequency, ν’, is: 

∂V ν λ2  ν 2 ν ' = = 0 = 0 =ν 1− β 2
∂λ λν ν 0

0 

1− β 2 

For the fixed observer seeing the particle as a moving system (in the frame S’) 
would attribute an energy and frequency as: 

E 1 m c2 

E = 0 , ν = 0 

1− β 2 h 1− β 2 

Then, we can say that the frequency of a wave associated with a particle is 
equivalent to the frequency associated with the energy of the particle for any inertial 
reference. 
The comparison of the last two frequency equations yields: 

v' = v (1 – β2) 

Then, de Broglie assigned three different frequencies to one and same particle: 
the internal frequency in the rest system (ν0) the internal frequency measured by an 
external observer (ν’); and the frequency this observer associates with the particle’s 
total energy (ν). 

The group of waves of similar frequencies which are associated with a particle 
has velocity cβ (the velocity of the particle), although each wave has velocity c/β, and 
the velocity of each wave does not vary according to the frequency transformation, 
but the beat frequency does. To demonstrate this, de Broglie used the group velocity 
(U): 

 νd  1  V m c2 4
 c 

= , V = , β = 1− 0

U dν β h 2 2ν 
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Where V is the phase velocity. Let us calculate ν/V: 

m c2 4	  	  h  2ν 2 −m c2 4

β = 1− 0  = 0

h 2 2  ν hν 

ν h 2ν 2 −m c  2 4  h  2ν 2 −m c  2 4

=ν 0 = 0

V ch ν ch 
Then, we have: 

 h  2  ν 2  −m c2 4  
d  0  
 ch 1   hν 1 

=	 = = 
U dν c h  2  ν 2  − m c  2 4  β

0 
c

As a consequence, the group velocity of a wave is: 

U = βc 

See the relations of V and U with β: 
V = c 

 ,	 U = βc
β 

Then we have the relation: 
c	 UV = ,	 β = 
β	 c 
c c2

V = = U U 
c 

As de Broglie said: “The velocity of the moving body is the energy velocity of a 
1 m c2

group of waves having frequencies ν = 0 and velocities c/β corresponding to 
h 1− β 2 

very slightly different values of β” (de Broglie 1924). 
In his 1924’s paper, de Broglie stated: “We are inclined to admit that any moving 

body may be accompanied by a wave and that it is impossible to disjoin motion of 
body and propagation of wave” (de Broglie 1924). For instance, an electron moving 
in circular orbit emits a wave that travels the same circular orbit as the electron but 
with faster velocity. 

Let us investigate how the particle’s momentum relates to the associated 
wavelength using the equation of the energy at primed frame: 

m c2

E ' =	 0 

 v 2 

1− 
 c  

E ' = E , v U= 
2 

2  U  E  1−  = m c2 4
0

 c2 
 
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We can rearrange it to: 
2 2 

2  2 4  E UE −m c  = 0 2c 
Let us use the last equation of the previous section and E = hν in the equation 

above: 
2  2 2  2 4E = p c  +m c0 

E hν= 
2 2 2 
  

2 2  2 4 2 4  U h  ν
 p c  +m c  −m c  = 0 0 2c 
2 4  2 2 2p c  =U h  ν 

Let us find another expression for the group velocity: 
2 

since : V = 
c 
U 

: = λν And V 
2 2 

Then : λν = 
c , U = 

c 
U λν 

Let us replace the equation of group velocity in the expression: 
2 4  2 2 2p c  =U h  ν 

2cU = 
λν 

2 c 
2 

2 4  2 2Then : p c =   h ν
λν   

4 2 2 
  
2 4  c h  ν
 p c  = 2 2λ ν  

By simplifying the last equation, we obtain the most famous equation of de 
Broglie: 

h p = 
λ 
This is the equation that relates the momentum of any particle to the wavelength 

associated to it. One can see that the wave-particle duality is a consequence of the 
coexistence of phase velocity (V) and group wave velocity (U) in a moving particle. 
In addition, implicitly de Broglie’s work leads to the existence of the superposition 
of wave functions. 
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De Broglie’s work drew Einstein’s attention for the association of a scalar wave 
(having phase velocity V and frequency ν) with any material particle of mass m and 
velocity v: 

c 2 

V = , v  = U 
v 

νν = 0

1− v2 c2 

Einstein noticed that: “One now observes that it is possible to associate a 
scalar wave field with such a gas (…)”. The idea of phase waves associated with 
gas molecules could provide a solution for the Gibbs paradox (Mehra 1987). The 
paradox allows the entropy of a system to decrease, violating the second law of 
thermodynamics. 

Besides the connection between phase wave with material particles, de Broglie 
gave a new interpretation to the Bohr-Sommerfeld’s quantum condition for the 
angular momentum (Chapter seven): 
2π 

∫ pφ d φ = nh
0 

De Broglie found a new quantum condition: 
ν m 2π mvr
∫ dl = 

∫ vdl = = n
V h h 

Instead of a circular orbit of the electron in a hydrogen atom, there exist standing 
waves at discrete energies and frequencies. De Broglie assumed that if a wavelength 
is associated with the electron and an integral number of wavelengths must fit in the 
circumference of an orbit, the quantum condition is fulfilled. 

2 π r n= λ
hλ = 

mv
 

 h 
2π r n=  
 mv  

From Bohr’s relation of angular momentum, we have: 

L = mvr = nh 

Then we have: 
nhL = m r  v = 
2π 
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Do-it-yourself-experience 
Use the free software Graph (https://www.padowan.dk/) and plot a wave packet with 
eleven sine waves. Each sine wave (10 sin(kx)) has the same amplitude, A = 10, and 
different k = 0.95,0.96,…1,04,1.05. 
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Schrödinger’s Wave 

Quantum Mechanics
 10 
1. Hamiltonian function 
As already mentioned in Chapter seven, The Hamiltonian function, H, is the total 
energy of the point mass, m, that is, the sum of the kinetic energy, Ekin, and potential 
energy, Epot, of this point mass. 

H q p  ( ,  )  = Ekin + Epot 

2m  dq 
2 pE = = kin  2  dt  2m 

Epot = ( )V q 
  

p2
 

( ,  )  = + ( )  H q p  V q  
2m 

The coordinate representation is a useful set of operators to represent a 
coordinate, r, and its corresponding momentum, pr. In a single dimension, x, the 
operators in coordinate representation are: 

∂
 pr = −i 

∂x 
, xr = xr 

r 

A more general coordinate representation is: 
∂

 p = −i , q = qr r r∂qr 

In three dimensions, it becomes: 
 i , q = x , ,p = − ∇  y zr r r r r r 

∂ ∂ ∂where : ∇ =  +  +r ∂x ∂y ∂zr r r 

For a conservative, non-relativistic system having 3N degrees of freedom, where 
N is the number of particles of mass m, the Hamiltonian function is: 



 264 Quantum Mechanics: Detailed Historical, Mathematical and Computational Approaches 

∑ p


3N 2 

H =  in +V ( x 1 , y z1, 1 ,..., x N , y 
2 N , z N )

n=1 m 
where : i = {x, y, z } , p 11 = p x1 , p 21 = p y1 , p 31 = p z1 ,... 

The coordinate representation of this Hamiltonian is: 
p = − ∇i  

p  
2 

= (−i 2
  ) ∇ =2 − 2 ∇2  

r  = x, y z  ,

∑ ∇


N 
 2 2

H = − n + V (r r  1, 2 ,.., r N )
n=1 2m 

∂2 ∂2 2 
2 ∂where : ∇ =  +  2 2 +

∂x ∂y ∂z 2

Where ∇2 is the Laplacian operator. 

2.  Hamilton-Jacobi equation 
The Hamilton-Jacobi equation is an alternative approach to other formulations of 
classical mechanics (Newton’s law of motion, Lagrangian mechanics and Hamilton 
mechanics). The Hamilton-Jacobi equation is the closest approach of classical 
mechanics to Schrödinger’s wave mechanics. It is useful in identifying conserved 
quantities and it is the only formulation in which the motion of a particle can be 
represented as a wave, uncovering the duality between trajectories and waves. The 
duality of the light (particle theory and wave theory) appeared in the eighteen century 
where light could be investigated by rays and geometric optics (Fermat’s principle) 
or by wavefront (Huygens principle). 

The wavefront is the spheric domain that the light covered at time t. If the 
propagation medium is homogeneous, the wave front is: 

c r − r0 = (t − t0 )n
 
or : S (r, t ) =
 r − r0 − ( c n) t 
Where light is emitted from a point r0 at time t0, c is the speed of light, n is the index 
of the propagating medium, S(r,t) is a collection of points that the light has reached 
at time t. 

The action function, S(t), is a numerical description of how a physical system 
has changed over time. The action depends on the end points (t0,q0) and (t1,q1). In 
classical mechanics, the path followed by a physical system (system’s trajectory 
describing evolution of the system over time) is that for which the action is minimized. 
The action can be represented as an integral over time. 

t 

∫
2 

S =  Ldt 
t1 

L = T −V or : L  = pv − H 
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Where the integrand is the Lagrangian (i.e., the difference between kinetic and 
potential energies). The action is usually described by a functional with input 
function of the evolution of the generalized coordinate, q(t), between times t1 and t2. 

t2 

S q t ( )  = ∫ L q v t dt ( , , ) 
t1 

Where v is the velocity. 
For the cases where the input function does not take into account the 

parametrization with time, we use the abbreviated action S0 defined as integral of the 
linear momentum along a path in the coordinates: 

S0 = ∫ pdq 

When the total energy E is conserved, the action function can be described by: 

S q t ( , ) = S0 − Et 

The trajectory of a system must obey the Euler-Lagrange equation: 
∂L  d L∂ 

= 
∂qi dt ∂vi 

For example, a particle of mass m moving under the influence of a conservative 
force has the following Lagrangian: 

1 2 2 2L = ( + v + v ) − ( ,  ,m v  V x y z  )x y z2 
The equations of motion for the particle are found by applying the Euler-

Lagrange equation for each coordinate (x, y and z) with the derivatives: 

∂L ∂V ∂L ∂V ∂L ∂V
= −  , = −  , = −  

∂x ∂x ∂y ∂y ∂z ∂z 
∂L ∂L ∂L 

= mv , = mv , = mvx y z∂v ∂v ∂vx y z 

d  ∂L  d  ∂L  d  ∂L  
  = max ,   = may ,   = maz dt  ∂vx  dt  ∂vy  dt  ∂vz  

∂L  d L∂ 
= 

∂qi dt ∂vi 

∂V ∂V ∂V
− = max , − = may , − = maz∂x ∂y ∂z 
Where one arrives at the Newton’s second law of motion. 

Since the trajectories must obey Euler-Lagrange equation, we can arrive at the 
relations below where the variation of the action can be computed as a function of the 
variation of its end points, that is, the derivatives of the action with respect to general 
coordinate and to time (Houchmandzadeh 2020). 
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∂S ∂L 
= = p t( ) 1∂q ∂v t1 

∂S
− = H E= 

∂t 
As a consequence of the first derivative, if we vary the end point q1, the relative 

variation in the action is the linear momentum p at the end point. 
Combining these relations, we have the Hamilton-Jacobi equation: 

∂S  ∂S  
+ H q, , t  = 0∂t ∂q  

The fact that the derivative of S with respect to time is a constant, E, leads to 
the equation: 

S q t ( , ) = W q( ) − Et 

Where W, the principal characteristic function, obeys the relation: 

 ∂W H q, = E 
 ∂q  

This relation was used by Schrödinger in his papers on quantum mechanics 
which is a simplification of the Hamilton-Jacobi equation for conservative systems. 

3. Schrödinger’s wave mechanics 
3.1 Introduction 

In a comparison between the most important developers of the modern quantum 
mechanics, we see that Heisenberg had some important collaborators along 
his journey to the matrix mechanics, while Schrödinger had worked alone in his 
wave mechanics as well as most of his papers on other topics. On the other hand, 
Schrödinger was more realistic than Heisenberg. Schrödinger wanted a new quantum 
theory that could account for the reality of the atom which was not accomplished by 
matrix mechanics. Whereas Heisenberg had continuously worked on the quantum 
atomic theory since his doctorate in 1922, Schrödinger had only one work in 1923 on 
the quantum atomic theory (Schrödinger 1923) and only in 1926 he started a series of 
publications of his wave mechanics. Schrödinger worked with the quantum orbits of 
a single electron of the Bohr-Sommerfeld’s quantum theory, but from 1922 to 1925 
he had dedicated much more on quantum statistical mechanics. 

Schrödinger’s work on wave mechanics was strongly influenced by de Broglie. 
Schrödinger noticed: “The de Broglie interpretation of the quantum rules seems to me 
related in some ways to my note in Z. Phys 12,13 (1923), where a notable property 
of Weyl ‘gauge factor’ exp(–∫φidxi) along the quasi-period [of the atomic system] is 
shown (…). After having recalled the laws of stability for the quantized trajectories 
(…) we have shown that one can interpret them as expressing the resonance of the 
phase wave on the length of the closed or quasi-closed trajectory. We believe that 
this is the first explanation which is physically plausible proposed for the stability 
conditions of Bohr and Sommerfeld” (Mehra 1987). Then, Schrödinger began to apply 
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de Broglie waves to further atomic problems but he could not visualize the phase wave 
of an electron on Kepler orbits and he tried to establish a geometrical picture of the de 
Broglie waves for the cases of a hydrogen atom under the action of a static electric or 
magnetic field which were not considered by de Broglie (Mehra 1987). 

3.2 Derivation of the wave equation and its use for hydrogen atom 

In his first work of wave mechanics, Schrödinger stated that: “(…) the notion of 
whole numbers, merely as such, is not introduced. Rather when integralness does 
appear, it arises in the same natural way as it does in the case of the node-numbers 
of a vibrating string” (Schrödinger 1926a). As Mehra stated: “Schrödinger hoped to 
be able to remove the arbitrariness of the quantum conditions of the old quantum 
theory of atomic structure; he claimed that he could derive them from a deeper, 
more fundamental principle(…) connecting the Hamiltonian principle of classical 
dynamics with the idea of the matter wave equation” (Mehra 1987). Then, the whole 
number n appears naturally in the wave mechanics (and not by a postulate as in the 
old quantum mechanics) by the resolution of a differential equation from a variational 
problem which yields naturally to a function and the whole number as solutions. 
Schrödinger’s first work deals with the radial solution of the hydrogen atom. 

The starting point of Schrödinger’s work is the Hamilton-Jacobi equation (see 
previous section): 

 ∂S H q, = E
 ∂q  

Where H is the Hamiltonian and the action S has an unknown function ψ which 
appears as a product of related functions of single coordinates: 
A solution for the above equation is in the form of a sum of functions: 

= ( ) ( ) 1 + f 2 ... f ( ) sS f q  q1 2 q + + s 

Schrödinger wrote S in the form 

S K  log ψ , K = = 

ψ ψ1 ( ) ( ) ( )q1 ψ 2 q2 ψ s qs = ... 

Where K is a constant and ψ is a product of functions of single coordinates. Then, the 
Hamilton-Jacobi equation becomes: 

S K= log ψ 

d 1 duln( ) u = 
dx u dx 
∂S ∂K log ψ ∂ log ψ K ∂ψ 

= = K = 
∂q ∂q ∂q ψ ∂q 

 K ∂ψ H q, = E ψ ∂q 
  

( ) ( ) , = T , +V q  ( )H  p q  p q  

 K ∂ψ  
 , q  V E  = 0T + −  
ψ ∂q  
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The above equation can be transformed to a quadratic form of ψ and its 
first derivatives are equated to zero when the relativistic variation of the mass is 
neglected. Then, the work is to seek a function ψ that is stationary (everywhere real, 
single-valued, finite and continuously differentiable up to the second order) for any 
arbitrary variation of the integral of the quadratic form. Then, the quantum condition 
of the old quantum mechanics is replaced by a variation problem. 

Schrödinger used the Hamilton function for a Keplerian motion of the non-
relativistic hydrogen atom where ψ can be chosen for all positive values of energy 
(corresponding to the energies of the hyperbolic orbits), E, and discrete set of negative 
values of E (corresponding to Balmer terms). 
For an electron in the Cartesian coordinates, the Hamiltonian function is: 

1 2 2 2H = 
2m ( p + p + p ) +Vx y z 

The Hamilton-Jacobi equation for a hydrogen atom becomes: 
2 2 2 1  ∂S   ∂S   ∂S  + +V E  = 0 +    −  2m  ∂x  ∂y   ∂z     

S K= log ψ 

d 1 du(ln u) = 
dx u dx 
∂S ∂K log ψ ∂ log ψ K ∂ψ 

= = K = 
∂x ∂x ∂x ψ ∂x 

2 2 22  K  ∂ψ   ∂ψ   ∂ψ   
2 + +V E  = 0  +      −

2mψ  ∂x   ∂y   ∂z   
 

2mψ 2
 

× 
K 2 

2 2 2
 ∂ψ   ∂ψ   ∂ψ  2m  e2  
  +   +   −  E + ψ 2 = 0 
 ∂x   ∂y   ∂z  K 2 

 r  
2eV = − 

r 
Where e and m are the charge and mass of the electron, respectively, and r is the 
radius of the circular orbit. 

The expression on the left-hand side (called F(x,y,z)) was subjected to a variation 
principle. 
When the function F(x,y,z) is inserted in the variational principle, it becomes: 

δ J = δ ( ,  , )  = 0F x y z dxdydz ∫∫∫ 
2 2 2

 ∂ψ   ∂ψ   ∂ψ  2m  e2  2where : F ( , , ) =   +   +   − 2  E x y z + ψ 
 ∂x   ∂y   ∂z  K  r  
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From the above equation, Schrödinger arrived at the wave equation for the 
hydrogen atom (Schrödinger 1926a): 

2 2m  e2 
∇ ψ + E + ψ = 02  

 r  
2 2 2 

2  ∂ψ   ∂ψ   ∂ψ where : ∇ ψ = + +     
 ∂x   ∂y   ∂z  

However, no particular reason has been given by Schrödinger for using the 
variational principle. 

Important to mention that initially Schrödinger had not reduced the above 
equation to: 


2
2 e2 

− ∇ ψ − ψ = Eψ
2m r 

(T V  ) = Eψ+ ψ 

Hψ = Eψ 

The solution of the above wave equation can be in polar coordinates if ψ can be 
written as the product of the three functions (r, θ, φ). The function of angles turns out 
to be a surface harmonics and the radial function r is called χ (the radial function in 
polar coordinates) 

(θ φ  χ  , ) rψ = S ( ) 
which leads to the equation: 

d 2 χ 2 d χ  2mE 2me2 n n( +1)  
+ + + − χ = 02  2 2 2 dr r dr   r r  

n = 0,1, 2,3,... 
The above equation is the radial Schrödinger equation of the hydrogen atom (see 

Chapter seventeen) where the radial function in polar coordinates becomes: 
αχ = r U

As a consequence, the radial wave equation becomes: 
2 2d U 2(α +1) dU 2m  e  

+ + E + U = 02 2  dr r dr  r  
No further details are given here, but can be found in Schrödinger’s second paper 

on wave mechanics (Schrödinger 1926b) or can be found in some books (Birtwistle 
1928). A different approach for the solution of the radial function of the hydrogen 
atom is given in Chapter seventeen. Although Schrödinger does not use the term 
wave function in his first paper of wave mechanics, he infers that some vibration 
process exists in the atom, which approaches more to the reality than the electronic 
orbits. 
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3.3  Hamilton’s analogy between optics and mechanics 

In his second paper on the wave mechanics (Schrödinger 1926b), Schrödinger 
established the foundations of his undulatory mechanics (which was popularly known 
as wave mechanics). In the first section, he pursued the Hamilton’s analogy between 
optics and mechanics. Schrödinger stated: “Hamilton’s variation principle can be 
shown to correspond to Fermat’s principle for a wave propagation in configuration 
space (q-space) and the Hamilton-Jacobi equation expresses Huygens’ principle for 
this wave propagation” (Schrödinger 1926b). Schrödinger used a different Hamilton-
Jacobi equation 

∂W  ∂W  
+T  q ,  +V q( ) = 0 

∂t k k 
 ∂qk  

Where he replaced the Hamilton function by kinetic (T) and potential (V) energies 
functions and used W (as he called it as the action function or the phase of the waves) 
instead of S from the relation: 

W = S (q k ) − Et 

To obtain: 

 ∂W 2T q k ,  = 2 (E −V ) 
 ∂qk 
After some derivations, Schrödinger established the relation between the step, ds, 

and an arbitrary surface W0, given below,in order to find the new surface W0 + dW0. 
dW0 Edt ds = ⇒ 

2(E V  − ) 2(E V− )
And the surfaces move at a normal velocity (or wave velocity), u, as: 

ds E hν u = =  ⇒ =u
dt 2 (E V  − ) 2 (h ν −V )
Then, the system of constant surfaces W is a system of wave surfaces of a 

progressive but stationary wave motion in q-space. Hence, the starting point for the 
undulatory representation of mechanics from a wave equation for q-space for all 
processes which only depend on time by a factor exp(2πiνt) is given by: 

2 

∇2 8πψ +  2 (E V− )ψ = 0
h 

In his ‘Handbuch der Experimentalphysik’ Hans Thirring emphasized the great 
importance of Schrödinger and de Broglie’s works in order to renew Hamilton’s 
optical-mechanical analogy (Mehra 1987). 

3.4  Application to one-particle harmonic oscillator 

In his second paper of wave mechanics, Schrödinger applied his wave equation to the 
case of the Planck oscillator. 
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d 2ψ 8π 2
+ (E − 2π ν2 2 2

0 2 2 q )ψ = 0
dq h 
where : V = 2π ν2 2 2

0 q 

This equation becomes: 

d 2ψ 
2 + (a − bq 2 )ψ = 0

dq 
8π 2 E 16π ν4 2 where : a = 

h2 ,b = 0 

h 2

After introducing x as independent variable, we have: 

x = q 4 b b  ∴ = ( x q )4 , q x  = 4 b

d 2ψ  a + − x2 
2 ψ =  0

dx  b  

The above wave equation is the Hermite differential equation (Chapter four) 
whose proper values and functions (orthogonal functions of Hermite) are: 

a 
=1,3,5,...(2n +1)

b 
x 2 

e 
−

2 Hn ( )  x

Where Hn(x) are the Hermite polynomials given in Chapter four. From the proper 
values, we get the energy of the system as: 

2n +1En = hν 0 , n = 0,1, 2,3,...
2 

And the proper functions become: 

 2π ν2 q 2   ν  
ψ n (q ) = exp  − 0 

 Hn  2 π q 0 h     h  
In his second paper of wave mechanics (Schrödinger 1926b), Schrödinger also 

explored his wave equation for the cases of rigid rotator and non-rigid rotator of a 
diatomic molecule whose results are in accordance with those from matrix mechanics. 

In another paper, Schrödinger complimented the study of harmonic oscillator 
by obtaining the wave function which aggregates all ψn  into one wave group and
obtaining the corresponding wave packet (Schrödinger 1926c). 

∑
∞  A n ψψ =  

n

n=0  2 n !

Schrödinger also used his wave mechanics for the study of the Stark effect of the 
Balmer lines where he found an excellent agreement between theory and experiment 
(Schrödinger 1926d). 
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Schrödinger extended his wave mechanics to non-relativistic time-dependent 
wave function (Schrödinger 1926e), which contains his famous one-particle equation: 

∂ψ  


2
2 

i =  −  ∇ +V ψ∂t  2m  

3.5  Wave equation applied to Compton effect 

Schrödinger also studied the Compton effect (Schrödinger 1927a) and the exchange 
of the energy according to wave mechanics (Schrödinger 1927b) where he considered 
a conservative system with wave equation: 

2 8π 2 4π i
∇ ψ − 2 Vψ − ψ = 0

h h 
Which has normalized proper solutions: 

 2π iE t ψ k exp  k 
 

 h  

Where ψk depends only on the coordinates of the system satisfying the equation: 
2 

∇2 8πψ k + (E V  k − )ψ 2 k = 0
h 

In which time does not appear. The general solution becomes: 

∑
 2π iE 

ψ
kt  

= c  
kψ ke

 
 h 

k 

Where ck’s are arbitrary constants called amplitudes (the square of their absolute 
values is the squares of the amplitudes). 

4.  Dirac notation 
The Dirac notation or bra-ket notation uses the angle brackets and a vertical bar to 
construct the bras and kets. 

ket : u 

bra : u 
The ket is the eigenvector or wave function. The bra is the starred wave function. 
In a matrix form, a ket is a row vector and a bra is a column vector: 

A = ( A* A * 
 A *1 2 N )

 B1 
 
 
 B

B =  2 
 

 
 

 
 
 BN 
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The Dirac notation is particularly useful for the inner product operation of 
eigenvectors. It is represented as: 

A B  

Linear operators act on ket from the right side of the function. In the same state 
vector for bra and ket, the expression becomes: 

ψ A ψ 

Where A is the linear operator and ψ is the eigenvector. 

The last two equations can be interpreted from the integrals below:
 

ψ ψ  = ∫ψ ψ * dτ  

ψ A ψ = ∫ψ * A d ψ τ

5.  Expectation value 
The expectation value is the probabilistic expected value of the measurement of 
a experiment. The expected value, E(X) or X , of a random variable, X, is the 
weighted average of independent realizations 

〈
of X. 
〉

When the number of outcomes 
of X is finite, the expectation of X is: 

E [ X  ] = X  = ∑
k 

x pi i
 
i=1
 

where : p 1 + p 2 + +... p k =1

and pk is the probability of the occurrence of the value xk. 
If all outcomes xi are equiprobable (i.e., p1 = p2 = … = pk), then the weighted 

average turns into the simple average. 
If X is a random variable with a probability density function of ƒ(x), the expected 

value is given by: 

E [ X ] = X = ∫ xf ( )x dx 
 

In quantum mechanics, the square of the wave function is the probability of 
finding the particle at a given position, r, defined as: 

dP (r ) =ψ * (r )ψ (r ) d 3 r 

Let us consider F(r) as an arbitrary function of the coordinates of the particle. Its 
expectation value is: 

F r  ( )  = ∫ P(r  )  F r( )  dr  = ∫ψ  * (r  ) F r  ( )  ψ (r  )d r  

where : ∫ dP (r ) = ∫ψ * (r )ψ (r ) d 3 r ⇒

⇒ P r  ( )  =ψ * (r )ψ (r ) 
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Where the wave function used above is normalized, then: 
∞ 

∫ψ  * 
nψ mdτ = δ    nm 

−∞ 

 1∴n = m ⇒ normalization
δ    nm = 

0∴n ≠ m ⇒ orthogonalization 

Where δnm is the Kronecker delta.  

The time-dependent expectation value < A > is given by:
 

d A  1 ∂A
= A,  H   +

dt i   ∂t 

Let us derive this equation by using the time-dependent Schrödinger equation 
and the derivation of the expectation value with time. 

A = ψ ( )t A ψ ( )t
 

d A  d  ψ ( )t d A
 d ψ ( )t
= A  ψ ( )t + ψ ( )t ψ ( )t + ψ ( )t A 

dt dt dt dt
 
d
 ψ ( )t  d ψ ( )t 1as  : ih  = H  ψ ( )  t ,  = H  ψ ( )t

dt dt i
 
 d ψ ( )t 

* 

( )* d ψ  ( )t
 
and : ih  = H ψ ( )t , −ih = ψ ( )t H

 dt  dt 

Then, we have: 

d A  1 1
= − ψ   ( )t H  A ψ ( )t + ψ ( )t AH  ψ ( )t

dt i i
 
d A


+ ψ ( )t ψ ( )t
dt 

d A  1 d A
= ψ t H H    ( ) A − A   ψ ( )t + ψ ( )t ψ ( )t

dt i   dt 
d A  1 ∂A

= ψ ( )t A,  H   ψ ( )t +
dt i   ∂t 

6. Born’s probability and superposition principle 
Until 1926, Born has made great contributions from the old quantum mechanics to 
the matrix mechanics. But his major achievement was his statistical interpretation 
of the wave mechanics in his attempt to avoid the revitalization of the classical 
continuum theory in Schrödinger’s wave theory. In his 1926’s paper Born studied the 
quantum mechanics of the collision phenomena where the probability (of transition) 
for the scattering of the electron from z-direction into [θ, φ]-direction is given by the 
square of Φnm  where n is the initial plane wave in the z-direction and m is the final 
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plane wave in the [θ, φ]-direction (Born 1926a). In its sequel, Born considered a 
normalized stationary wave function ψ as a sum of discrete, non-degenerate proper 
functions ψn:

ψ ( )  q = ∑cnψ n ( )q 
n 

where : ∫ 
2

ψ ( )q dq = ∑ c 2 
n

n 
And then |c |2n  is the probability for the system to be in the state n (Born 1926b). 

Since a wave packet is a sum (or superposition) of large number of periodical 
waves (see chapter nine) described by the equation: 

1 ∞


y( )  x = ( ) ∫ Ae i k x  i −ω  i t 
dk
π  2 i

−∞ 

Then, a wave function (a type of wave packet) is a superposition of its eigenvector 
components. 

Ψ = ∑Cn ϕ 
n
 

n
 

The superposition principle states that a combination of solutions for a linear 
equation (see Chapter three) is also a solution of it. For example, if state vectors ƒ1, 
ƒ2 and ƒ3 each solve the linear equation of an eigenvalue problem, then ψ = c1ƒ1 + 
c2ƒ2 + c3ƒ3 is also a solution of the same eigenvalue problem, where c is a coefficient. 
Consider an electron with two possible spin configurations (see Chapter twelve): 

ϕ = c1 ↑ + c2 ↓ 

The probability for a specified configuration is given by the square of the 
absolute value of the coefficient. 

pup = c 2 
1 

p = c 2 
down 2 

 pptotal total =  = p up pup+ + ppdowdown n 

In a general form, any eigenvector can be described as: 

Ψ = ∑Cn ϕ 
n 

n 

The expectation value of a wave function described by the above equation is: 

Aψ n = ω ψn n 

A = ∫ψ * A   ψ τd = ψ A  ψ 

 
* 

∫ ∑  A   
=  C nψ n  A ∑C nψ n d *

  τ = ∑C C  n n 
n n n 

∫ψ * A  ψ τnd
   

n
 

A = ∑C C  *
n nωn ∫ψ ψ*  d τ = C C  *

nωn =
2 

n n ∑ n ∑ Cn ωn 
n n n 

Then : A = ∑ C 2 
n ωn

n 
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where the wave function is normalized.
 
Consider again the general form of the superposition principle: 


Ψ = ∑C un n 
n 

× un 

un Ψ = ∑Cn u un
 n
n
 

u un n = 1

Then : Cn = un Ψ

7.  Derivation of the quantum linear momentum operator 
The expectation value of the position of a particle in x-axis for a time-dependent 
wave function is: 

∞ 

x = ∫ ψ *(  x t, )  x  ψ (x t, )  dx  
−∞ 

Where the operator of x is x itself.
 
The expectation value of the linear momentum of a particle is:
 

∂ p = m x 
∂t
 
∂ ∞
 

p = m ∫ψ *(  x t  , )  ⋅ ⋅x  ψ  (  x t  , )  dx 
  
∂t −∞
  
∂ ∞ 

p = m
∂t ∫ x ψ  * (x t  , )  ψ (x t, )     dx  

−∞

∞ ∂ψ
∫

 *(  x t  , )  ∂ψ (  x t  , )   
p = m   x  ψ (  x t  , )  +ψ *(  x t, )   dx  

−∞  ∂t ∂t  

Let us use the time-dependent Schrödinger equation in order to obtain the partial 
derivative of the wave function with respect to time: 

∂ψ (  x t  , )  

2 ∂2ψ (  x t, )  i = −  2
 
+V  (x t  , )  ψ (  x t  , )   

∂t 2m ∂x
∂ψ (x t, )   ∂2ψ (  x t  , )  V  (  x t, )  
  

= −  2 + ψ (  x t  , )  
∂t 2mi ∂x i 
Now, let us obtain the partial derivative of the complex conjugate of the wave 

function with respect to time. 

∂ψ * (x t  , )   ∂2ψ *(x t  , )  V (x t  , )  
= − ψ *(x t  , )  

∂t 2mi ∂x2 i 
Where the complex conjugate of i is –i and V(x, t) is real. 
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Let us replace both partial derivatives in the expectation value expression of the 
linear momentum: 

 
 ∂2ψ * (x t  , )  V (x t  , )  *   

∞  2 − ψ (x t  , )  ψ (x t  , )  + 
2mi ∂x i  p = m ∫ x dx  

−∞ *  
 ∂2 ψ (x t  , )  V (x t  , )  +ψ (  x t  , )  − + ψ (x t  , )   

  2mi ∂x2 i  
∞  

 ∂2ψ * (x t  , )  2
*  ∂ ψ (  x t  , )  p  = m ∫ x ψ (x t  , )  −ψ 

−∞ 2 2 (x t  , )  2  dx  
 mi ∂x 2mi ∂x  

 ∞  ∂2ψ * (x t  , )  ∂2ψ (x t, )   
p = ∫ x ψ (x t  , )  2 −ψ  * (x, t )   dx

2i −∞  ∂x ∂x2 
 

Let us separate both terms over integration above into terms A and B: 

  ∞ ∂2ψ * (x t  , )  ∞ ∂2 ψ (x t  , )  
p =  ψ ( , )  x * 

i ∫ x x t dx − ψ (x, t )  dx2 −∞ ∂x 2 ∫ 
−∞ ∂x2 

 
∞ ∂2ψ * (x t  , )  ∞ ∂2ψ
∫

 (x t, )  A =  xψ (x, t )  dx,  B = ∫ x ψ * 
2 (x, t )  2 dx

−∞ ∂x  −∞ ∂x
Let us now use the integration by parts of the general formula: 
b b 

∫ u  ( )  x v  '( )  x  dx  = [ u  ( )x v( )  x  ]b − 
a ∫ u '( )x v  ( )  x  dx  

a a 

In the term A of the previous above: 
∞ ∂2ψ * (x t  , )  ∂ψ

∞
  *(x t, )  A  = ∫ xψ (x t, )  dx  = xψ (x t  , )  −

−∞ ∂x  2 ∂x
−∞ 

∞ ∂ [x ψ (x t  , )  ] ∂ψ * (x t, )  
− ∫ dx

−∞ ∂x ∂x 

∂ψ *(x t, )  
∞

xψ (x t, )  = 0 
∂x 

−∞ 

Then : 
∞ ∂ [x ψ (x t  , )  ] ∂ψ *(x t, )  A = − ∫ dx

−∞ ∂x ∂x 
∞  ∂ψ *

∫
 (x t, )  ∂ψ (x t, )  ∂ψ *(x t, )   

A = −  ψ (x, t )  +  x dx
−∞  ∂x ∂x ∂x  
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Similarly, we use the same procedure for the term B, exchanging the complex conjugates: 
∞ ∂2ψ
∫

 (x t, )  B =  x ψ * (  x, )  t 
x2 dx = 

−∞ ∂
 
∞  * ∂ψ (  x t  , )  ∂ψ *(x t, )  ∂ψ  (  x t, )  


B = − ∫ ψ (x, )  t  + x dx
−∞  ∂x ∂x ∂x  

As a result, we have: 

 p = [ A B− ]
2i 

 ∂ψ * (x t  , )  ∂ψ (  x t  , )  ∂ψ  * (x t, )  
−ψ  (x t, )  − x +

 ∞  ∂x ∂x ∂xp = ∫  dx
2 i −∞  * ∂ψ (x t  , )  ∂ψ  *(x t  , )  ∂ψ  (x t, )  

+ψ  (  x t, )  +  x  ∂x ∂x ∂x 
 

 ∞ 
∫

 
= ψ * ∂ψ (x t  , )  ∂ψ *(  x t  , ) 
   

p    (x t  , )  −ψ (x t, )  dx  
2i −∞  ∂x ∂x  

Once again, let us integrate by parts the second term of the above equation: 

∞ ∂ψ * (  x t  , )  ∞ ∂ψ (x t, )  
∫ψ (x t  , )  dx  =ψ (  x t  , )  ψ * x t

 
 ( , )  

∞
− * 

−∞ ∫ψ (x t  , )  dx  
−∞ ∂x −∞ ∂x

ψ (x t  , )  ψ *(  x t  , )  
∞

= 
−∞
 

0 
∞ ∂ψ * (x t  , )  ∞
 ∂ψ  (x t, )  Then : ∫ψ (x, )  t dx = − ∫ ψ *(x , )  t dx 

−∞ ∂x −∞ ∂x

Now, let us replace the result of the above equation in the expression of the 
expectation value of the linear momentum: 

 ∞  ∂ψ  (x t  , )  ∂ψ  (x t  , )  p  = ∫ ψ * + ψ * 
2i  (x t  , )  (x t, )  dx  

−∞  ∂x ∂x 
 

 ∞ 
* ∂ψ  (x t  , )  ∞ 
 ∂  p = ∫ ψ (x t  , )  dx  = ∫ ψ * (  x t  , )   ψ  (x t  , )  dx  

i −∞ ∂x −∞  i ∂x 



 ∂Then : p x = 
i ∂x 
 



∂
or : p x = − i
∂x 

In three-dimensional space, the linear momentum operator becomes: 
p = − ∇i 
  

∂ ∂ ∂

∇ =  +  +  

∂x ∂y ∂z 

Where ∇ is the gradient operator. 
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8.  Normalization of a wave function 
The normalization of a wave function, ψ(x), assures that the one particle represented 
by this wave function has to be found in the range of the system, for example, –∞ to +∞.  
The normalization is done from the product of the normalization constant, N, and the 
wave function so that: 

∫ 
∞ 

Nψ ( )  x N  ψ ( )x dx  = 1
−∞ 

Which means that we have 100% probability to find the particle described by the 
wave function within the limits of the system. 
Let the normalized wave function as: 

ψ ( )  x N = Nψ ( )x 

And let us apply the probability condition to find the equation for the 
normalization constant: 
+∞ 

∫ Nψ ( )  x N  ψ ( )x dx  = 1
−∞ 

+∞ 

N 2 ∫ [ψ ( )  x ]2 dx = 1
−∞ 

1N = 
+∞ 

∫ [ψ ( )  2 
 x ] dx

−∞ 

For numerical integration we have that an integration is approximated to a sum, 
then we have 

1 N = 
sum ψ ( )  x 2 

Since a state vector and a wave function can be quantum states, let \v> be a 
quantum state vector: 

v 
2

 = 3 u + 4.2 u − 2 
y  0.5 u ,  = u 2 

x z ux y  = uz  =1

Then the normalization constant for this quantum state vector is: 
1N = 

3 2 + 2
 4.2 2 + −0.5 

The Fortran source code that provides the normalization constant, the normalized 
state vector, the probability for each component and the corresponding sum (which 
must give one) for a general 3-dimensional state vector is given below. 
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!Program name: NORMALIZATION 
real :: a, b, c, s, norm
 
integer::i
 
real, dimension (3)::psi, Npsi, P, Npsi2
 

func(a,b,c)=1./sqrt(sum(abs(psi)**2))
 
norm (a,b,c) = dot_product (psi, psi)
 
print *, “For the state vector aUx+bUy+cUz, give the values of a, b and c:”
 
read *, a, b, c
 
psi=[a,b,c]
 
Print *, psi
 
Npsi=func(a,b,c)*psi
 
P=abs(func(a,b,c)*psi)**2
 
Npsi2=psi/sqrt(norm(a,b,c))
 
Print *, “The normalization constant is:”, func(a,b,c)
 
Print *, “The normalized state vector is:”, Npsi, Npsi2
 
Print *, “The probability is:”, P
 
s=P(1)+P(2)+P(3)
 
print *, s
 
stop
 
end
 

9.  Orthogonality of a wave function 
One of the properties of the eigenfunction is the orthogonality, where Kronecker 
delta, δmn, is 0 or 1. 
+∞ 1 if m = n
∫ ψ m ( )  x ψ n ( )  x dx = δmn = 

−∞  0 if m ≠ n
Let us take the particle in one-dimensional box (Chapter fifteen): 

2  n ⋅π ψ n (x )  = in   x  , n = 0, 1 ± ±, 2, 3± ,...  
l  l  

Let us use ψm and ψn where m ≠ n in the integral above: 

2 l m x  π nπ xI = ∫ sin sin dx
l 0 l l 

Let us use the trigonometric relation: 
1 sin x sin y = [cos( x − y) − cos( x + y)]
2 
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In the previous integral: 

m x  π x  (m − )π   m + )π π n 1  n x  ( n x
sin sin = cos   − cos  l l 2   l   l 
 

1   ( )π ( )
l m − n x    m + n xπ 
I = ∫ cos   − cos   dx

l l l0     
 

1 l  (m − n x)π  1 l  (m + n x)π 

I = ∫ cos   dx − ∫ cos   dx

l l l l0   0   

Each integral is zero because: 

1 l  (m n)π x   1  ( + )π x 
l 

∫
+ m n  

cos   dx =  sin  l  ((m n  π ) 0 l  + ) l  0 

= 
1 [sin( m n+ )π − sin 0 ] = 0

((m n) )+ π 

Then, 

2 l m x  π xπ nI = sin sin dx = 0, m ≠ n∫l 0 l l 

10. Hermitian operator 
As we have seen in chapter three, an eigenvalue equation has an eigenvector u which 
changes only a scalar factor (an eigenvalue λ) after a linear transformation of an 
operator A acting on it. 

Au = λu 

An operator can be represented by a matrix, A, acting on a vector space V in the 
vector u to yield another vector v which is a scalar, λ, of the vector u. Below, the 
linear transformation in a generic vector space with n elements. 

     
          
a1,1 a1,2  a1,n  u1 v1  u1 

a a  u2,1 2,2 a2, n u2 v2 2        = = λ

           

   
          
an,1 an,2  an n        vn, u unn    

In Chapter three, we have seen that a Hermitian matrix A is a complex square 
matrix whose conjugate transpose, (A*)T, is equivalent to it. For example: 

 m a − ib c − id  
 a + ib n e if , ,− ∴  m n o ∈  
c + id e + if o   
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Physical pure states are represented as unit-norm vector or wave function in a 
special complex Hilbert space (a generalization of the Euclidian space with a finite 
or infinite number of dimensions). 

The operators that yield real eigenvalues (observables that can also be obtained 
from a physical experiment) are called Hermitian. All operators of an eigenvalue 
equation are Hermitian. Hermitian operators have real eigenvalues and orthonormal 
eigenfunctions. A Hermitian operator, A, is a linear operator that satisfies: 

∫
* 

ϕ*A ˆ  ψ τd = ∫ψ (A ˆ ϕ ) dτ
* 

or : ∫ ϕ*A  ̂  ψ d τ =  (∫ψ *  A ˆ ϕ τd ) 
where : ( * 

ψ * ) =ψ

Let us assume the following eigenvalue equation of a normalized eigenfunction ψ: 

Aψ = aψ 

The corresponding expectation eigenvalue is: 

A = ∫ψ * A ψ τ  d = ∫ψ *a  ψ τd = a∫ψ *ψ τd = a

where : ∫ψ ψ * d τ  =1

Since physical observables are real numbers, then: 

a = a* 

Then, we have the conjugate of the expectation value as: 
* * 

 A d ) *
A = (∫ψ ψ* 

 τ  = ∫ψ ψA  
 *dτ  

 * 
as :  A  ψ * = a *ψ *
 

then  : A * = ∫ψ a*ψ *d τ  = a*∫ψ ψ * d τ  = a * = a

As a consequence, any Hermitian operator follows the condition:  

∫
* 

ψ * A  ψ d τ = ∫ψ A * ∫   ψ τd = ψ A ψ τ*d



* 
where : A  = A 

Properties of Hermitian operators: 

 (1)  The eigenvalues of a Hermitian operator are real (proof: example 2); 
 (2)  The eigenfunctions of a Hermitian operator whose eigenvalues are distinguished 

(non-degenerate) are orthogonal (proof: example 3); 
 (3)  When k eigenfunctions correspond to the 	same eigenvalue (k-degenerate 

eigenfunctions) and they are a complete set of another eigenfunction, then this 
eigenfunction has the same eigenvalue (proof: example 4). 
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11.  Examples 

 (1)  Show that the quantum linear momentum operator is Hermitian. 
Solution: We have to demonstrate the following condition: 

∫ψ * p x ψ dx = ∫ψ ψ p* * 
x dx 

Let us use the expression for the quantum linear momentum operator in the left 
hand of the above equation: 

∫ψ  * p * d
xψ dx = −i ∫ψ ψ dx

dx 
By using the general formula for the integration by parts: 

∫udv = uv − ∫ vdu 

dv du or : ∫u dx = uv − ∫ v dx
dx dx 

we have: 
∞ dψ d * 

∫
 p

∞ ψψ * 
xψ dx 

 ∞  
 = −i∫ ψ *  dx = −iψ ψ*   − 

−∞
i

−∞
 ψ dx 

dx  ∫−∞ dx 

−i
∞

ψ ψ  *  =
−∞ 

0 

ψ *∞ ∞* d  dψ * 
∫ψ  p x ψ dx = −i ∫ ψ    dx = ∫ ψ  −i  dx = ∫ψ ψp

−∞  * *
x dx 

dx −∞  dx  

 (2)  Show that the eigenvalues of a Hermitian operator are real. 
Solution: Let us consider the following eigenvalue equations: 

Aψ n = a nψ n 

Aψ m = a mψ m 

And let us use the Hermitian condition: 

ˆ ˆ * 
ψ n A ψ m = ψ m A ψ n 

Let us replace the previous equations in the equation above: 

ψ
* 

 n am ψ m = ψ m an ψ n 

a * *
m ψ n ψ m = an ψ m ψ n 

ψ = ψ * 
 n ψ m  m ψ n = δ ij 

if : i = j 
then :δ ij = 1

and : am = a* 
n 



 

 (3)  Show that the eigenfunctions of a Hermitian operator whose eigenvalues are 
distinguished are orthogonal. 

Solution: Consider the eigenvectors ψ and ϕ of the Hermitian operator Â: 

Aψ = aψ ≡ A  ψ = a ψ 

Aϕ = bϕ ≡ A  ϕ = b ϕ 

And their corresponding Hermitian conjugates: 

A * 
ψ * = a *ψ *

* 
A ϕ*  = b * *ϕ 

A
* 

= A, a = a b*, = b* 

then : 

Aψ * = aψ * ≡ ψ A  = a ψ 

Aϕ * = bϕ * ≡ ϕ A  = b ϕ 

Multiplying Aψ * = aψ * by ϕ and Aϕ* = bϕ*  by ψ, we have: 

ψ A  ϕ = a ψ ϕ  

ϕ A  ψ = b ϕ ψ  

By subtracting both equations, we have: 

As : ψ A  ϕ = ϕ A  ψ 

And : ψ ϕ = ϕ ψ  

then : (a − b) ψ ϕ  = 0 

If (a–b) ≠ 0, then ψ ϕ  = 0 , i.e., the eigenfunctions ψ and ϕ are orthogonal. 
 (4)  Show that the eigenfunctions ϕi that form a complete set for the expansion of 

ψ and when they have the same eigenvalue, the eigenfunction ψ has the same 
eigenvalue. 

Solution: Let us suppose that the complete set of ψ is: 

ψ = c 1 1  ϕ + c 2ϕ2  

And that: 

Aϕ1 = aϕ1 

Aϕ2 = aϕ2 

Then, we have to show that: 

Aψ = aψ 
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Let us replace the expansion in the left side of the equation above: 

Aψ =   A (c 1 1ϕ + c 2ϕ 2  ) = Ac 1 1  ϕ + Ac 2ϕ2  = c Aϕ 

1 1 + c 2 Aϕ2  

Now, let us replace the eigenvalue equations of ϕi in the equation above: 

c Aϕ + c 2 A1 1 ϕ2 = c a  1 ϕ1 + c2a  ϕ 2 = a (c  1ϕ1 + c 2ϕ 2 ) = aψ
By comparing the last two equations, we have: 

Aψ = aψ 

 (5)  Show that the probability density, p, of an eigenfunction is time-invariant. 
Solution: Let us derivate the norm of the state vector with time. 

norm : ψ ( )t ψ ( )t 

d ψ ( )t ψ ( )t d ψ ( )t d ψ ( )t 
= ψ ( )t + ψ ( )t

dt dt dt 
Let us use the time-dependent Schrödinger equation in the above equation: 

d ψ ( )t d ψ ( )t 1ih  = H    ψ ( )  t ,  = H  ψ ( )t
dt dt i
 
 d ψ ( )t 

* 
 

  = (H * d ψ ( )t
 
and :  ih ψ ( )t ) , −ih = ψ ( )t H

 dt  dt

d ψ ( )t ψ ( )t 1then  : = − ψ ( )t H ψ ( )t  + ψ    ( )t H ψ ( )t = 0
dt i 

d ψ ( )t ψ ( )t 
= 0 

dt 

If the derivative of the norm of the eigenfunction with time is zero, then 
derivative of the square of the norm (the probability density, p) with time is also zero. 

p =  ( )t ψ
2 

 ψ  ( )t 

d ψ ( )  ψ ( )  t
2

 t  
= 0

dt 
 (6)  A system described by the Hamiltonian (Johnson and Pedersen 1986): 

 d 2H =   2 
 −  


2 + x

dx  
 (a)  Show that Ax.exp(–x2/2) is an eigenfunction of the Hamiltonian function given 

above. 
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Solution: 

d 2 

) d 2
 

− ( Axe − x2 /2  = −A  ( xe − x2 /2 

2 dx2 ) =

dx
d ( xe − x 2 /2 ) = − x 2 /2  dx d e + x (e − x 2 /2

dx dx dx )
d u ' 

u ' de du ' u ' du ' e = = e
dx du ' dx dx 

d − x2 /2 ( ) ( )(e 
dx )

d e  − x2 /2 d −x 2 / 2   
e /2 2

= x
d (

= − − x2

−x2 / 2  ) dx 2 

d ( xe − x2 /2 ) = (1− x2 ) e− x2 /2

dx 
d 

−A (1− x2 ) e − x 2 /2   = A(3 − x 2 ) xe − x 2 /2 = 3Axe − x 2 /2 − Ax 3 e − x 2 /2

dx  

d 2
 

− ( Axe − x2 /2 ) = A ( 3 − x 2 ) xe − x2 /2 


dx 2 

 d 2 
 − 2 + x 2 

 Axe − x 2 /2  = 3Axe − x 2 /2 − Ax 3 e − x 2 /2 + Ax 3 e − x 2 /2

 dx  
Hu = 3u 

 (b)  Determine the coefficient A  
Solution: 

∫u *udx =1 

∫
+∞ 

A2 2  x e − x2

dx =1;
−∞ 

2 πA =1 ∴ =A (4 π )1 4 
2 

 (7)  Transform the time-dependent Schrödinger equation into the time-independent 
Schrödinger equation. 

Solution: Let us assume a time-dependent wave function 

ψ (q t, ) = φ ξ( )  (t q )  

And let us obtain the time-independent Schrödinger equation from the time-
dependent Schrödinger equation. The time-dependent Schrödinger equation is: 

∂ψ (q t, )Hψ (q t, ) = i
 ∂t 
Let us explicit ψ(q,t) in the time-dependent Schrödinger equation: 



∂φ ξ( )  t (q)  H tφ ξ( )  (q  )  = i 
∂t 
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Since the Hamiltonian function operates only on spatial coordinates, the above 
equation can be rearranged into: 

∂φ( )tφ(t)  H  ξ ( )  q = iξ ( )q 
∂t 

And now, let us divide the above equation by the explicit form of ψ(q,t): 

φ( )  t H  ξ (q)  iξ (q )  ∂φ( )t 
= 

φ ξ( )  (  t q  )  φ ξ( )  (  t q)  ∂t 

H q  ξ ( )  i ∂φ( )t
= 

ξ (q )  φ( )t ∂t 

The two sides of the above equation depend on separate independent variables. 
For this equality to hold, each side of the equation must be equal to a constant (this 
constant is E, the total energy of the system). Then, we have: 

H q  ξ ( )  
= E , H q  ξ ( )  = Eξ ( )q

ξ ( )q 
and 
i ∂φ( )t ∂φ( )t iE 

= E , = − φ( )t
φ( )t ∂t ∂t  

Then, we arrived at the famous time-independent Schrödinger equation: 

HΨ = EΨ

Where Ψ is the time-independent wave function. 

12.  Exercises 
 (1)  For the wave function Ax.exp(–x2/2) give the expectation value of x. 
 (2)  For the Hamiltonian operator in one dimension 

p 2 

H  = +V x( )
2m 

Derive the commutators: 
d H x   ,  = −i  dx
 

H p ,  dV ( )x = i  dx 
Where: 
 (i)  V(x) can be represented in a power series which gives [V(x), x] = 0 
 (ii)  The commutator [p2, p] = p[p, p] = 0 
 (iii)  The commutator [p2, x] = [p, x]p + p[p, x] 
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Hint: Let each commutator operate on an arbitrary function u. For example, to 
evaluate the commutator [x. d/dx], we use: 

[  d d  du du dx x, d dx]  u = − = − − = −x  x  u x  x  u u
 dx dx  dx dx dx 

Then : ,[x d dx ] = −1  

 (2)  In time t = 0 the state of a harmonic oscillator is given by the normalized wave 
function (Johnson and Pedersen 1986): 

ψ + (1 2  )1 2  
 = (1 5  )1 2  u1( )x u2 ( )  x + (3  10  )1 2  u3( )x 

Where un(x) is a time-independent component of the wave function and (1/5)1/2, 
(1/2)1/2, (3/10)1/2 are coefficients, cn(t0) at time t =0. Give the corresponding time 
dependent wave function, where now un(x,t) becomes a time-dependent component 
of the wave function 
Hint: Use the follow relations: 

H  ϕn x  , = En ϕn x  , 

ψ ( )t = ∑c n x  , ( )t ϕn x  , 
n x  ,

c n x  , ( )t = ϕ ψn x  , ( )t  

Answer: 

c t( )  = (1 5)1 2   e−iE 1(t−t0 ) 
1 

c t( )  = 1 2  e −iE 2 (t −t 0 ) 1 2)  
2 ( 

c t( ) = (3 10 )1 2   e−iE 3 (t−t0 ) 
3 

3 5 7En = (n +1 2) h E  ν , 1 = h Eν   , 2 = h E  ν ,
2 3 = hν

2 2
 
h = 2 ,  π  E 1 = 3 πν , E  2 = 5 πν , E  3
 = 7πν 
  

ψ = (1 5 )1 2   e −3 iπν (t t   0 ) − 
 + (1 2 )1 2   e −5 iπν (t t  − 0 ) + (3 10 )1 2   e−7 iπν ( t t− 0 )

 (3)  By knowing that the operator pxis –iћDx, where Dx is d/dx, derive the commutator 
relation: [ px x  − xp  x ]  f x  ( )  = −i f x  ( ) .

 (4)  Find the expectation value of a particle in a one-dimensional box described by: 

2 nπψ n (x ) = 

〈 〉

cos (k xn ) , k 
a n = , − a 2 ≤ ≤x a  2

a 

Answer: x  = 0 
 (5)  By knowing the equation for the linear momentum operator, derive the equation 

for the kinetic energy operator: 
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Data: 
p = − ∇i  



2

T  =  − ∇2

2m 
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( )*( )a x x x dxν ν µy y
∞

−∞

= ⋅ ⋅∫
( ) ( ) ( )

1
f x x x a xµ ν ν

ν

y y
∞

=

= ⋅ = ∑

1.  Equivalence between matrix mechanics and wave mechanics 
In order to test the equivalence between matrix mechanics and wave mechanics, let 
us use the example of the one-dimensional free motion of particle (Chapter fourteen) 
in the interval [0,1]. 

y (x) = 2 sin (νπ x) 
From mathematics, every continuous function ƒ(x) that is also continuously 

differentiable can be represented by a series with these eigenfunctions: 
∞ 

f x  ( ) = ∑a ν 2 sin (νπ x) 
ν =1
 

∞
 

aν = ∫y *
ν ( )  x f ( )  x dx 

−∞ 

The coefficient av is obtained after the multiplication of the previous equation with 
the starred wave function on the left of both sides of the equation followed by the 
integration. Alternatively, the function f(x) can be written as: 

f (
∞ 

 x ) = x ⋅y µ ( x) = ∑a νy  ν ( x) 
ν =1 

Then, the coefficient av is: 
∞ 

a ν = ∫ y *ν ( )x ⋅ ⋅x y µ ( x ) dx
−∞ 

Which gives: 
∞ 

f ( x ) = ∑
∞

yν ( x ) ∫y *
ν (  y )  ⋅ y ⋅y  µ ( y ) dy 

ν =1 −∞ 

Applications of Matrix 
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where y is a general representation of the operator. The components of the matrices 
X(or Q) and P, (X)νµ and (P)νµ, respectively, can be calculated from the eigenfunctions 
ϕ(x), where they will represent the coefficient av. 

∞ 

( X ) = y * x x y µ ( )ν ( )  ⋅ ⋅  x dx 
νµ ∫ 

−∞ 

∞ 
*  dP ∫ ν ⋅ y µ ( )( ) νµ

= y ( )x ⋅ x dx 
−∞ i dx 

We can see that the function ƒ(x) can be written in the form: 

f ( ) x 
∞

y ( )( X= ∑ ν x )νµ
ν =1 

Then, we have to show that the matrices X and P, whose elements are defined 
above satisfy the commutation relation: 

PX − XP = I 
i 

Let us obtain the elements of the matrix product PX: 

( )νµ 
= P )κµ 

= 
 ∞

yν x ⋅ 
d ∑y ( )  X ) dx PX ∑( ) ( νκ 

X
i ∫ 

*( )  
dx µ x ( κµ 

κ κ−∞ 

By replacing the equation of the function ƒ(x) into the equation above, we have: 

 ∞ 
* d( PX ) = y x ⋅ f ( )( )  x dx 

νµ ∫ ν ∑i −∞ dx κ 

 ∞ 
* dPX = y ( )  ⋅ x y x


i −∞ dx κ
 

( )νµ ∫ ν x ∑ ⋅ µ ( ) dx 

For the elements of the matrix product XP, we have: 

 ∞ 

( XP ) = X ) ( ) P = yν 
*( )  x y ( )  P∑( x ⋅ ∑ µ x ( ) dx 

νµ νκ κµ ∫ κµ
 
κ i −∞
 κ 

A similar function to function ƒ(x), g(x), is defined as: 

 d ( )  = y ( )x = ∑bνyν xg x  ( )
i dx i ν 

∞ 
* d 

ν ∫yν ( )x ⋅ y ( ) dxb = ⋅ x 
−∞ dx 

Then, we have: 

 ∞ d( )  = ∑yν x ∫yν 
*(  )  ⋅ y ( ) g x ( )  y ⋅ y dy 

i ν −∞ dy 

g x( )  = 
 

i ν

y x ( ) ( )  P∑ ν νµ 



( )

( )

( )

2

2

2

r r r r r r
r r

r r r r r r
r r

r r r r

iq p p q q q
q q

iq p p q q q
q q

iq p p q

yy y
π

y yy y
π

y y
π

 ∂ ∂
− = − − ∂ ∂ 

 ∂ ∂
− = − − − ∂ ∂ 

− =






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The equation of the elements of the matrix product XP can be written as: 

 ∞ d( XP ) = ∫yν 
*( )x ⋅ y µ x

νµ 
x ⋅ ( ) dx
 

i −∞ dx
 

Now let us combine the equations of the elements of the matrix products XP and PX: 

 ∞  d d ( PX − XP ) = yν 
*( )  x − x y x

νµ ∫ x   µ ( ) dx 
i −∞ dx dx  

Now, let us obtain the commutation relation [d/dx,x]: 

 d    d d  , x = x x−   
 dx    dx dx  

We know that: 

d p = − i 
dx 

[ p x  ] = − i,  

Then, we have: 

[ p x  ] = −  i d x + ix d , = −  i
dx dx 

÷ −  i 
d d x x  = 1−
dx dx 
Then : 
 d    d d  , x = x x  = 1−   
 dx    dx dx  

As a consequence, we obtain: 

 ∞ 
( PX − XP ) = yν 

*( )  µ x dx = δνµi −∞ iνµ ∫ x y ( ) 

= : (PX − XP) = 
when :ν µ  
i 

Schrödinger himself showed the equivalence between matrix mechanics and 
wave mechanics by replacing the quantum operator of the linear momentum in 
the commutator (qr,pr) and applying the wave function on the same commutator 
(Schrödinger 1926): 

i  ∂ ∂ (q p  − p q  )y = −  q − q yr r  r r   r r 2π  ∂qr ∂qr 
 
i ∂
where : p = − r 2π ∂qr 



( )
2

:
2

r r r r r r
r r

r
r

iq p p q q q
q q

iwhere p
q

y y
π

π

 ∂ ∂
− = − − ∂ ∂ 

∂
= −

∂


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i  ∂y ∂ (q  r p  r − p qr r   )y = − qr − qry 
2π  ∂qr ∂qr 
 

i  ∂y ∂y (qr p  r − p q  r r  )y =  − q r − −y q
2 r π  ∂qr ∂qr  

i( )  q  r  p  r − p q  r r   y = y
2π 

2.  Quantum virial theorem and QTAIM 
As stated in chapter eight, the Heisenberg equation of motion is: 

dA i [ i 
=  H, A ] = (HA − AH)

dt   

Where A is the observable and H is the Hamiltonian. In Heisenberg equation of 
motion (HEM), the state vectors are time-independent while the operators (and 
observables) are time-dependent. 

Heisenberg equation of motion is equivalent to Schrödinger equation of motion 
(SEM) by only changing the time-dependency between operators (variable in HEM 
and constant in SEM) and vector states (constant in HEM and variable in SEM). 
Then, it is a matter of convenience to use either of them. 
The observables for SEM and HEM are: 

SEM  :  A = y ( )t A  y ( )t 

HEM : A = y (0) U t (t  )A U t  ( ) y (0) 

By applying the Heisenberg equation of motion for a time-independent arbitrary 
linear operator, F, one finds: 

d i F = [H F, ]
dt  

The corresponding eigenvalues of the operator F are time-invariant on the 
stationary state.  This leads to the hypervirial theorem. This result is achieved by 
considering the Hermitian property of Hamiltonian operator (Hy*y = y*Hy), the 
restriction on F that preserves its Hermiticity and the use of Schrödinger equation for 
stationary state (Hy = Ey or Hy* = Ey*). 

[H F  , ] = y [H F  , ] y
y [H,F ] y y= HF  − FH y =

= y HF y − y FH y = Hy * F y − y *FHy = 

= E y y*F −  y *FEy = E  y y*F −  y y*F   = 0  
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Then, the corresponding expectation value of dF/dt is: 

d i F = [H F, ] = 0
dt  

The equation above is the hypervirial theorem (Hirschfelder 1960). The operator 
F is called hypervirial operator. Chen defined it as: “it is a time-independent linear 
operator with an arbitrary functional structure expressed in terms of dynamical 
variables of the system under consideration (...) In the energy representation, the 
diagonal matrix elements of the hypervirial operator are constant in time; this is 
known as the hypervirial theorem” (Chen 1964). 

The quantum virial theorem can be obtained from the hypervirial theorem for an 
arbitrary hypervirial operator (linear time-independent operator), F, depending only 
on the coordinates and momenta of the system where its expectation value, <F>, is 
time-invariant. 
By considering F as a product of coordinates and linear momentum, the operator F is: 

 ∂ ∂ ∂ r  = x + +y z,  p = −i + + 
 ∂x ∂y ∂z 
 


 

∂ ∂ ∂ 
F = r ⋅ p = −i  x + y + z  = −i r  ⋅∇  
 ∂x ∂y ∂z  

And H is given by: 



2  H = − ∇2 +V (r)
2m 

Then, the commutator [H, F] is: 

[ ]  


2
2 

H F, = −i  −  ∇ − r ⋅∇( ) V  = −i ( 2 T −  r ⋅∇( ) V )
 m 
 

[   


2 

or  : H F, ] =  − ∇2  



 −  r ⋅∇( )   V  = ( 2 T −  r ⋅∇( ) V )
i  m  i

Remember that: 

[P Q]  ,  = I = −i I
i
 

1 1  i i i
where : = ⋅ =  2 = = −i
i i i i −1 

Since F is a hypervirial operator, its expectation value is time-invariant. Then, 
the last expression below is the quantum mechanical virial theorem. 

d i F  = [ H F  , ] = 0
dt  
 (2 T − r ⋅∇( )V ) = 0
i 
2 T =  r ⋅∇( )  V
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The classical virial theorem states that: 

1 1 
= ∑ dV x i ( )xT ∑m v2 

2 i i  = − i

i 2 i dx
 

The quantum mechanical counterpart for a single particle in one dimension is: 
1 ψ  2 1 dV ( )x

 p  
2m x ψ = ψ x ψ

2 dx 

If V = krn where k is a constant, then we have: 

( n ) n 12 T = r ⋅∇  kr = r ⋅nkr − = n V 

Where <T> and <V> are the expectation values of kinetic and potential energy 
operators. 

For a system of interacting electrons, the potential energy term contains the term 
1/rij where n = –1. Then, the virial theorem becomes: 

2 T = − V

In Quantum Theory of Atoms in Molecules (QTAIM), Bader used the above 
expression to a subsystem (or open system), i.e., for an atomic basin, W, in a 
molecule in a stationary state, where the Hermiticity of H is lost and by assuming a 
one-electron Hamiltonian he arrived at the expression below (Bader 1994): 

ψ [ H F, ] ψ 
W 
= (−2 / 2  m)

∫ dS(r ;  W)jF (r )  ⋅n(r)  

jF (r )  =ψ *∇(Fψ ) −∇ψ * ( Fψ )
Where jF(r) is the vector current, giving the velocity of density of F at position r, and 
jF(r)•n(r) is called flux. 

While Heisenberg equation of motion vanishes for a total system, for an open 
one-electron system is equal to the surface integral of the normal component of the 
current property of F. The same expression is found for an open N-electron system 
by multiplying to N.  This is the great achievement of Bader’s theory, where it was 
possible to obtain any atomic property (atomic energy, atomic dipole moment, etc.) 
of an atom in a molecule. As Bader stated: “this approach enables one to define 
all properties, including those that depend upon inter-particle coordinates such as 
energy, in terms of real-space density distribution” (Bader 2007). 

3.  Quantum resonance for helium atom and chemical bond 
Resonance is an important concept (or model) in chemistry. To our knowledge, the 
concept of resonance applied to atoms (and molecules as a consequence) was firstly 
developed by Heisenberg in order to rationalize the helium atom. 

Heisenberg used the model of two oscillators to describe helium atom 
(Heisenberg 1926a). As already mentioned in Chapter five that Planck’s model, 
Slater’s virtual oscillator model and matrix mechanics are based on Lorentz model 
of the electronic motion represented by a harmonic oscillation of the electron under 
the influence of the nucleus in the center of the atom. He was aware that his model 
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must be in accordance with the Bose-Einstein statistics (Bose 1924, Einstein 1924) 
and Pauli’s exclusion principle (Pauli 1925). 

The Hamiltonian  for this system of two harmonic oscillators representing two 
identical electrons 1 and 2 subject to identical forces is: 

1 2 m 
+ ω 2 2 1 m H = p 1 q 1 + p 2 + ω 2 2q + mλq

2m 2 2m 2 2 2 1q  2

where : 

1 kE P = kq 2 , ω = , k = mω 2 

2 m 
1 Then : E mω2 2

P = q
2 

Where m and ω are mass and frequencies of the coupled oscillators and λ is the 
interaction constant. 

By using known transformations, the Hamiltonian becomes a sum of two 
oscillators corresponding to a “principle resonance frequency”, as stated by 
Heisenberg. 

1
 2 m 2 2 1 2 m H = p ' + ω ' '  q 2 2

2m 1 2 1 1 + p ' 2 + ω ' '2 q
2m 2 2

1 1 where : q '1 = (q + q
2 1 2 ) , '  q 2 = (q1 − q

2 2 )

ω '  2 2 2 2
1 = ω + λ, '  ω 2 = ω − λ

And the energies for the combined system according to quantum mechanics is: 

ω '1 h  1  ω '2 h  1 H n n' '  =  n ' 1 +  +  n ' 2 +1 2 2π  2  2π  2  

Where n’ is the quantum number. Then, the electrons execute the same motion but 
in different phase. 

Heisenberg stated that the energies of both electrons are degenerate when their 
states n and m are different due to the resonance phenomenon, but when their states 
are the same (i.e., n = m) their energies are different due to the lack of resonance. 
When there is resonance, the degenerate energy is lifted by additional energy W1 of 
the perturbated systems which is related to the energy of the unperturbed system H1  
as follows: 

W −1 = S −1H1S 

Where all the matrices of the above equation are diagonal and S is the transformation 
matrix according to Heisenberg and his coworkers’ previous paper (Born et al. 1925). 
For nondegenerate states, the values of the matrix elements are all equal to 1, which 
requires the solution of two linear equations: 

W  1 − H 1 (nm , nm ) H 1 (nm , mn )  S nm   0
 1    =  − H (nm , mn ) W 1 − H 1 ( nm, nm ) S mn   0

 

 



b
n

a
m

b
m

a
nmn

nm

W

W

ϕϕϕϕ −= 211

1

mn
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nm

W
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1
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The solutions of the above equation are: 

W 1 H 1 ( , nm ) + H 1 
nm = nm ( nm, nm )

S nm , nm = 1 2 ,  S mn , nm = 1 2

W 1 1 1 
mn = H ( nm , nm ) − H (nm , mn )

S nm , mn = 1 2 ,  S mn , mn = − 1 2

Afterwards, Heisenberg incorporated the resonance phenomenon in Schrödinger 
quantum mechanics using normalized wave functions φa 

n and φb 
n in his Matrix

Mechanics. Then, the equivalent solutions were: 

W 1 = 1 2 (
(
ϕaϕ b + ϕaϕb

nm n m m n 

) 
)( n m m n )

W 1 aϕ b 
mn = 1 2 (ϕ b

n m −ϕa
mϕn )

The first eigenfunction, W1 
nm, is symmetric and the second one, W1 

mn, is
antisymmetric. Heisenberg continued this work in a second paper where he found 
numerical results which, for the first time ever, gave comparatively good agreement 
with experimental results of the helium spectrum (Heisenberg 1926b). 

The last equations above were the basis for the formulation of the chemical 
bond by Heitler and London. They used the same Heisenberg’s reasoning changing 
two interacting oscillators into two electrons in a bonding region between two 
hydrogen nuclei, yielding the two guess wave functions for H2: ψ = ϕA(1)ϕB(2) and  
ψ = ϕA(2) ϕB(1), where the numbers are the electrons and the letters are the hydrogen 
nuclei (Heitler and London 1927). When considering the indistinguishability of 
identical particles and doing normalization and orthogonalization processes of these 
wave functions, two final wave functions, a and b, were obtained: 

1 a = [ φA (1)φB (2) +φA (2)φ )] 
2 + 2S B (1

1 b = [φA (1)φ B (2) −φ (2)φ (1)]
2 − 2S A B 

Where S is the overlap integral, a is the H2 symmetric repulsive wave function and 
b the H2 antisymmetric attractive wave function. These equations are equivalent to 
the solution for the interaction between n and m oscillators (W 1  and W 1 

nm mn) in terms
of wave mechanics. Then, resonance is the basis of the formation of both H2 wave 
functions. 

4.  Uncertainty principle 
In his paper about the uncertainty principle, Heisenberg showed the difference 
between the kinematics of a body in a continuous theory (i.e., the classical 
physics) and a particle in a discontinuous theory (i.e., the quantum mechanics). He 
demonstrated that from a body moving along the x-axis where the position changes 
with the time, x(t), one has the information of the instant velocity from the tangent 
at each point of x(t) curve and, on the other hand, in a similar discontinuous picture 
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where there is a series of points at finite separation it is meaningless to speak about 
the velocity at one position (Heisenberg 1927). He added that: “At the instant at 
which the position of the electron is known, its momentum therefore can be known 
up to magnitudes which correspond to that discontinuous change. Thus, the more 
precisely the position is determined, the less precisely the momentum is known, 
and conversely. In this circumstance we see a direct physical interpretation of the 
equation pq – qp = –iħ.” (Heisenberg 1927). He stated q1 as the precision of the value 
q (or the mean error of q) where the position is governed by the wavelength of the 
light in the γ-ray microscope carrying the determination of position. Additionally, he 
established that p1  is the precision with which the value of p is determinable (i.e., the 
discontinuous change of p in the Compton effect). Under the elementary laws of the 
Compton effect, q1 and p1 stand in the relation: 

p q  1 1  

ε ( p )ε (q )  
Where ε(q) and ε(p) are the mean error of the position measurement and momentum 
measurement, respectively. 

Then, Heisenberg derived the relation for the standard deviations of the position 
and momentum for a class of Gaussian wave functions. 

σ ( p )σ ( p )  
= 

2 
Later, Kennan proved the inequality: 

( ) ( )  σ p σ p ≥
2 

for arbitrary wave function (Kennard 1927). The prerequisite for this is that 

Schrödinger’s wave packet is reinterpreted as a probability packet. 

Let us use two general linear operators A and B, whose average eigenvalues are:
 

A = ξ ξ†A

B = ξ ξ†B

The square deviation from the average value of A and B is; 

( ∆A) 2 = ξ † (A − A I  )2 
ξ
 

( ∆B) 2 = ξ †
(B − B I)2 
ξ 

Let us define a complex matrix M as: 

M = (A − A I  ) + ia (B − B I) 

 

 

 



 Applications of Matrix and Wave Quantum Mechanics 299 

Where a > 0 and real. Then: 

(Mξ ) † ( Mξ ) ≥ 0 

 
† † † (A − A I  )2 

+a (B − B I)2 2 
ξ M M  ξ ξ=  ξ

+ia (AB − BA ) 	  

ξ †	M† M ξ = (∆A  )2 +a 2 ( ∆B)2 + i aξ † (AB − BA )ξ ≥ 0 

Then: 

(∆A	 ) 2 +a 2 ( ∆B) 2 + i aξ † (AB − BA )ξ ≥ 0 

×a −1 

a −1	( ∆A)2 +a ( ∆B  )2 ≥ −i ξ † [A B, ]ξ 

a −1 (∆A)2 +a (∆B)2 ≥ −i [A, B  ]
Varying a for fixed ∆A and ∆B, we find that the left side of the above inequality 

has its minimum value when a satisfies the equation: 
minimum of :a 2 

 −1 (∆A) +a (∆B)2 

d {a −1 (∆A) 2 )2
 +a (∆B } 

= −a −2 ( ∆A)2 + ( ∆B)2 
  = 0

da
 
∆A
Then :a = 
∆B 

As a consequence, we have the inequality equation: 

 ∆A 
−1

2 ∆A 2 
  (∆A) + (∆B) ≥ −i [A B, ]
 ∆B  ∆B 
2 ∆A∆B   ≥ −i  [A B, ]

−i [ A B, ]
∆ ∆A B ≥  

2 
For the particular case where A = Q and B = P, we have: 

[Q P, ] = iI 

[Q P, ] = iI = i




∆ ∆Q P ≥  

2 

Then, we derived the Heisenberg’s uncertainty principle. 
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Now, let us show that when if there is a simultaneous eigenfunction of P and Q, 
their commutation relation is zero. 

Q P,   = 0  

Suppose that {ui} constitutes a complete set of eigenfunctions for the two linear 
operators of the momentum and position, i.e., {ui} is a simultaneous eigenfunctions 
of the linear momentum and position operators. Since the set {ui} is a simultaneous 
set of eigenfunctions of linear momentum and position operators, we have: 

Qu  = q u  , Pi i i  u  i = p u  i i  , i = 1, 2,..., n

Where ri and pi are the eigenvalues of the position and linear momentum operators, 
respectively. Then, we have that: 

 Q, P   = ( QP  − PQ   ) f  = 0  
where : f = ∑ ci i  u 

i 

Then, by replacing the eigenequations in the above equation, we have: 

( QP  −   PQ  )∑c u = ∑c ( QP  − PQ  

i i  i   ) u i =
i i 

= ∑c (Qp i − Pqi i )u i = ∑c i ( q i p i − p i iq ) u i = 0
i i 

Since: 

f = ∑ c ui i ≠ 0
i 

Then: 

∑( qi p  i  − p q  i i   ) = 0
i 

Or : (QP  − PQ  ) = Q, P   = 0  
Then, it is impossible to have a simultaneous set of eigenfunctions of P and Q  

because it violates the most important postulate of the quantum mechanics. 

5.  Dirac’s quantum mechanics 
The English physicist Dirac based on both matrix mechanics and wave mechanics to 
develop his own quantum mechanics: a mix of matrix mechanics, wave mechanics 
and the algebra that he implemented. For example, he distinguished q-numbers 
from c-numbers. The former are quantum numbers/variables and the latter are 
numbers/variables of the classical mathematics. He stated that is not possible to 
affirm that one q-number is greater or less than another and the q-numbers satisfy 
all the ordinary laws of algebra  except for the commutative law of multiplication 
(as already observed in matrix mechanics). For example, he used matrix mechanics 
q-numbers of coordinates represented by a set of harmonic components of the type  
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x(nm).exp{iω(nm)t, where x(nm) and ω(nm) are q-numbers and n, m and t are 
c-numbers (Dirac 1926a). 

Dirac defined a dynamical system as a multiply periodic with a set of arbitrary 
variables J and w when it follows the properties (where the Hamiltonian H is a 
function of J’s only): 

[J r , J s ] = 0,  [w w  r , s ] = 0

[w r , J s ] = 0(r ≠ s ) ,or :1 (r = s) 
∑ C a

a a exp i ( 1w 1 +a2 w 2 + +... anw n )  = ∑a 
C a exp i (a  w) 

wk =ν kt 

∑ C a exp i (a ) =
a   C exp 2 π

 
w ∑a a i (aν ) t 

•

Jr = [J H  r , ] = 0
• 

wr = [w Hr , ] = ∂H ∂ Jr  

where :[J r  , Js ] = J r J s − Js rJ 

Where νk are the linear frequencies and the product νkt are the angle variables. The 
quantities w• 

r  correspond to orbital frequencies from Bohr’s theory. 
In quantum theory, x and y are functions of the coordinates q1, q2, …qs and 

momenta p1, p2, …,os of a multiply periodic system of s degrees of freedom. Suppose 
x can be expanded as: 

x = ∑ x a , J exp 2 π i aν 
a ( ) ( ) t

Where a1, a2,…, as are integers and J’s and νt’s (the product of frequency and 
time) are the action and angle variables, respectively. On the quantum theory, x is an 
aggregate of terms 

x = x (n n  , −a )exp 2 π νi  (n n  , −a ) t 

Where x(n, n – a) is the amplitude for the corresponding frequency ν(n,n – a) due to 

the transition from n to n – a state.
 
In classical theory, x is a function of p’s and q’s, so that:
 

•  ∂x • ∂x •  
x = ∑ + 

k  qk pk 
 ∂qk ∂pk  

But if H is the Hamiltonian function, then we have: 

∂H • ∂H • 

= qk , = − p
∂p k

k ∂qk 

•  ∂ ∂x H  ∂ ∂x H then : x = ∑ k  − 
 ∂ ∂q pk k ∂p qk ∂ k 

•

x  = [ x, H  ] 
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Dirac used Schrödinger’s equation below in his works: 

{H q( r , p r ) −W  }y = 0

∂ ∂ pr  = i , −W = −i  
∂qr ∂t 

Where for the values of the parameter W exists a wave function satisfying the above 
equation. 

Dirac stated that the dynamical system is specified by a Hamiltonian equation 
between the variables (Dirac 1926b): 
H q( r , ,pr t ) −W  = 0

Or more generally by: 

F  ( q  r , p r , ,  t W  ) = 0 

Then, one has: 
Fy = 0 

If ‘a’ is a constant of integration of the system, we have: 
[ a F  , ] = 0
Fa y = aF y = 0 

6.  Importance of the commutation to the quantum mechanics 
The operators act on a quantum mechanical state (eigenvector or eigenfunction) and 
transform it into a new state under a linear transformation. 

When a quantum mechanical measurement is performed, an eigenvalue of an 
operator is measured and after the measurement the initial eigenstate is returned. 

If two or more operators commute,they have the same eigenfunction and they 
can have the same set of eigenfunctions. Then, the corresponding physical quantities 
can be evaluated or measured simultaneously without uncertainty. For example, if A  
and B commute and y is their common eigenfunction, we have: 

Ay = ay 

By = by 
As a consequence of their commutative property, A acting on y first is the same 

as B acting on y first. 

BA y = ABy 

Then, we have: 
BA y = ABy = Aby = bAy 

B A( y ) = b ( Ay )
The above equation indicates that Ay  is an eigenfunction of B  with eigenvalue 

b. Then, when A operates on y it cannot change y, but it produces a constant times 
y. As a consequence, when two operators act on their common eigenfunction the 
result is the product of their corresponding eigenvalues. 
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B A  ( y ) = Ba y = aBy = aby

On the other hand, when two operators do not commute, their corresponding 
eigenvalues cannot be obtained simultaneously due to the Heisenberg’s uncertainty 
principle. 

For a complete set of commuting operators it is possible to find a unique unitary 
transformation (see Chapter three) that diagonalizes simultaneously all the operators 
in order to obtain their corresponding eigenvalues. For example, L2, Lz and H form
a complete set of commuting operators for the hydrogen atom and the set of their 
corresponding eigenvalues (see Chapters sixteen and seventeen) completely specifies 
a unique eigenstate of the hydrogen atom. 

7.  Copenhagen interpretation 
Copenhagen interpretation was neither a formal conference  (such as Solvay 
conference) nor any original published paper. It is a designation for a set of ideas 
probably discussed between Bohr and Heisenberg from 1925 to 1927. Heisenberg 
coined the term “Copenhagen interpretation” in 1955 and firstly published it in 
1958 (Heisenberg 1958). However, Bohr was the first to defend the ideas of the 
“Copenhagen interpretation” in Solvay conference in 1927 after the attacks of Einstein 
against these ideas. By the end of 1927, the ideas of the Copenhagen interpretation 
were accepted by Pauli, Dirac, Born, Jordan and Ehrenfest ending the philosophical 
dispute of the new results of the quantum mechanics at that time, despite the persistent 
criticisms of Einstein, Schrodinger and Planck in 1930s (Camilleri 2009). In 
addition, there were some disagreements among the founders of quantum mechanics, 
mainly between Bohr and Heisenberg, in 1920–1930s which lead to the conclusion 
that Copenhagen interpretation was not a coherent philosophical framework. In 
1940–50s, the Russian physicists criticized the Copenhagen interpretation and this 
probably triggered Heisenberg’s agenda for defending the orthodox interpretations 
of quantum mechanics from 1955 on. 
Some basic principles of the Copenhagen interpretation are: 
 1.  The quantum mechanics is intrinsically indeterministic (owing to Heisenberg’s 

uncertainty principle); 
 2.  In the appropriate limit, the quantum mechanics approaches classical physics and 

reproduces classical predictions (owing to Bohr’s correspondence principle); 
 3.  The square of the amplitude of the wave function gives the probability for 

the outcomes of measurements of the system (Born 1926), owing to Born’s 
probability statement (Born rule),; 

 4.  The objects have certain pairs of complementary properties which cannot 
be observed or measured simultaneously (Bohr 1928), owing to Bohr’s 
complementary theory. 

 5.  During the observation, the system must interact with the measurement device 
and the corresponding wave function (a superposition of several eigenstates) 
collapses, reducing to an eigenstate of the observable that is registered. 
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8.  Examples 
 (1)  By knowing that the time-dependent wave function is: 

y ( )t = U t( )  y (0)  

where :  U ( )  t = e −iHt /

Give the time-dependent expectation value (Chapter ten).
 
Solution: For obtaining the observable of a given time-dependent operator, A(t), one 

has to use the Heisenberg equation of motion.
 

A = y (0) U t (t  )A U t  ( ) y (0) 

Where U(t) becomes the time-dependent operator. 

A = y (0) e iHt /  
t 

Ae −iHt /  y (0) 

The equation of motion for A(t) is: 

i He iHt / Ae −iHt / eiHt /  ∂A +  e −iHt / +
d 

  ∂t A t( ) = y (0) y (0) 
dt i 

+ eiHt / A(− H e  ) −iHt /

 

Then, time-dependent expectation value becomes: 

d i [ ] iHt /  ∂A A t( ) = y (0)  H  , A t  ( ) + e  e −iHt /


 y (0) 
dt   ∂t   

d A  1  
= y (0) A, H   y (0) + eiHt /



 ∂A e−iHt /

dt i   ∂t 

This equation is similar to the time-dependent expectation value obtained in 
Chapter ten: 

d A  1 ∂A
= y ( )t A,  H   y ( )t +

dt i   ∂t 

 (2)  Derive the quantum mechanical virial theorem (Johnson and Pedersen 1986): 

1 
 2 1 dV ( )xy px y = y x y

2m 2 dx 

By knowing the commutators: 

dV ( )  x 2 d p ,H    

x = −i , x,H  =   dx   m dx 
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Solution (for simplicity: p = px): 

dV ( )x 1 
= − p ,H 

dx i  

1 dV ( )x i y x x p,H  y = y  y = 
2 dx 2  

i i
= y x (pH H   −    p) y = y xp  H H − xp   + px  H − xH  p y = 

2 2 
i i 

        

 2  d
= y x p   H H− x p   + x,H   p y = y x p  H H− x p    + p y = 

2   2 m dx 
d das : p = −i  

 ,  = i p 
dx dx 

1 dV ( )x i  2
then  : y x y   −   = y x p  H H xp  − ip  y = 

2 dx 2 m
as  : y Hxp   y = ∑ y H  y y' ' xp   y = E y xp  y 

1 dV ( )x i t 

i y E )  2 hen : x y   = (E − y x p y − y p  y 2 dx 2  m  
1 dV ( )x 1 

 2 
y x y = y p y

2 dx 2m 

9.  Exercises 
 (1)  For one particle in a symmetric box whose potential energy, V, is: 

0,  − a 2 < <x a  2
V = 

∞ , otherwise       
Show that the expectation value of δ × δp is 

δ δx p = i  2 

Where: 

δ x = x − x 

δ p = p − p 

And the ground state wave function is: 

y (x  ) = 2 a cos (π x a) 
By knowing that for a symmetrical box, < x > = < p > = 0 and: 

δ δx p = ∫y  *( )  x δxδ y p ( ) x dx
 

d



δ p = −i 

  , δ x x=
x 



 

 (2)  By knowing that the uncertainties in x and p are defined as: 

 2 * 
1 2  

∆ =x  y ( )x ( x − x ) y ( )  x dx 
∫ 


1 2  

 ∆p 

2 
= *   

∫y ( )x ( p − p ) y ( )  x dx   
Determine the uncertainty product, ∆x∆p, of the harmonic oscillator with the 

wave function: 
( )( )  

2

y x = (a π )1 4  e −a x 2

Tips: (i) set < x > = < p > = 0 since the integrands in both cases are odd functions of 
x and thus integrate to zero; (b) calculate firstly (∆x)2 and (∆p)2. 
Answer: ∆x∆p =  2 
 (3)  By using the identity of the commuting kinetic energy operator and linear 

momentum operator: 

T P( y ) = P (T  y ) 
Show that they commute, i.e., 

[T P  , ] = 0 

Tip: Use the expressions of the corresponding operators in the first equation to arrive 
the second equation. 
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1.  The magnetic moment, Larmor’s theorem, magnetic quantum 
number and Landé’s core model 

The magnetic moment, m,is the magnetic strength and orientation of a magnet (a 
material that produces a magnetic field). The magnetic moment usually refers to 
a system’s magnetic dipole moment, µ (the component of the magnetic moment 
equivalent to a magnetic dipole). The magnetic dipole moment is formed by the 
passage of electrons through a conducting loop of wire and it is the product of the 
electric current I and the area that the loop encloses, A. 

μ = IA 

As for the case of the hydrogen atom, the electron creates its own current as it 
goes around the atom where its nucleus is at the center of the loop. Then,the electron 
magnetic dipole moment is (in SI unit): 

q reυ µe = −
2 

Lwhere : L = meυ υr ∴ =   
m re 

 L  qe   r
 mr  q

 µ e
e = −  = − L

2 2me 

Where qe is the charge of the electron and me is the electron mass. 
The square of the angular momentum, L2, is given below where we can obtain 

the equation for the angular momentum L (see Chapter sixteen): 

L 2 =  2 l ( l  +1 ) ⇒ =L   l ( l  +1) 
Where l is the quantum number of the angular momentum L. Then, the electron 
magnetic dipole moment is: 

q
 µe = − e 

 l (l  +1)
2me 

Landé, Pauli, Dirac  
and Spin 12 
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The magnetic moment of an electron is directly proportional to the angular 
momentum L or the resultant of the angular momentum, J. The proportionality 
constant is the gyromagnetic ratio, γ. 
µ γ J=
 

µ
 qeγ = = 
J 2m c0 

Where m0 is the electron’s rest mass. The above equation of the gyromagnetic ratio is 

associated with atoms showing normal Zeeman effect (Chapter five). 

Hence, the magnetic dipole moment of the electron becomes (in CGS unit):
 

qeµ = − J
2m c0 

When an external magnetic field is applied to the hydrogen atom, it exerts a 
torque on the electron’s angular momentum so that it is aligned to the magnetic field 
axis (in Oz axis, for example). Then, we have Lz instead of L, where its value is: 

–LZ = mh

Then, the electron magnetic dipole moment, µB, becomes (in two different unit 
systems): 

q qeSI : µ = − e L = − mB 2m Z 2m0 0 

qe qeCGS : µB = − LZ = − m
2m c  2m c0 0 

Where the constant qeh–/2m0 is the Bohr magneton discussed in Chapter seven 
(Heilbron and Kuhn 1969). 

The torque, τ, resultant of the action of an external magnetic field over a magnet 
(for example, a hydrogen atom) is similar to a precession of a classical gyroscope: 

= B γ J B×τ µ × =  

The angular momentum precesses about the external field axis with an angular 
frequency (known as Larmor frequency). The Larmor frequency, νL, is: 

q Be=ν L 4π m c0 

:ω πν 2 Lwhere = 

Where ω, is the angular frequency about the Oz axis. 
According to Larmor’s frequency equation, the presence of an external magnetic 

field does not change the angle of the resultant angular momentum J around the 
field B, but it alters the orientation of the orbit with respect to the field direction. In 
addition, the vector J does not project itself on the magnetic field in a continuous 
way, but only in discrete values of the angle denoted by the discrete values of the 
magnetic quantum number m (m = ±1, ±2, ±3,.., ±k, for k = 0,1,2,3,4,..n) where 
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n is the principal quantum number and k is the azimuthal quantum number (see 
Chapter seven). For example, for n = 2 and k = 2, m has four values (m = ±1, ±2) 
corresponding to the four projections of the orbital angular momentum J on the field 
direction. Then, m is the magnetic quantum number that is observed when the atom 
is under magnetic field. 

Sommerfeld created a third quantum number j (called inner quantum number) 
in order to account for anomalous Zeeman effect (see Chapter seven) and Landé 
empirically ascribed half-integral values to the magnetic quantum number (or the 
inner quantum number j) so that he could obtain the doublets and the quartets (Landé 
1921). In this model, so-called atomic core model, there is a vector sum of K (angular 
momentum vector of valence electrons, later modified to the electron’s angular 
momentum) and R (angular momentum vector of core electrons and nucleus, later 
modified to electron spin) to yield the resultant J (total angular momentum of the 
whole atom, later modified to the electron’s total angular momentum). 

J = K + R 

The limits of the quantum number of the total angular momentum, j, are limited by: 

k r− ≤ j ≤ +k r 
k = 0,1, 2,3,... 
r =1 2,3 2,... 

Where k (k = 0, 1, 2,…) and r are the corresponding quantum numbers of K and R 

(Landé 1921). In the singlets, r = 0. In the triplets, r = 1. In the doublets, r = 1/2 and 

in the quartets, r = 3/2.
 
In modern notation, r and k are replaced by s and l, respectively. Then, we have:
 

k ⇒ l, K  ⇒ L 
r ⇒ s R, ⇒ S 
J  = L S+ 

l − s ≤ j ≤ +l s  
l = 0,1, 2,3,... 
s =1 2,3 2,...  

See in Table 12.1 the Landé scheme of quantum numbers (j, l and s) for singlets 
and doublets (Landé 1923a). 

2.  Zeeman effect and Landé g-factor  
The experiment of the Zeeman effect and Lorentz model to account for the normal 
Zeeman effect was discussed in Chapter five. When a magnetic field is applied to 
an atom, each spectral line from its emission spectroscopy is split into three lines 
(the central one is at the place of the original line and the outer ones are equidistant 
from it). The effect of the external magnetic field to the atom is to cause the Larmor 
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Table 12.1:  Landé scheme of quantum numbers (l, j and s) for singlets and doublets. 

Singlets (s = 0) 

Quantum number j 
0 1 2 3 … 

0 s 
Quantum 1 p
Number 

2 dl 
3 f 
… … 

Doublets (s = 1/2) 

Quantum number j 
1/2 3/2 5/2 7/2 … 

0 s 
Quantum 1 p1 p2Number 

2 l d1 d2

3 f1 f2 

… …. 

precession of the orbit of its electron around the axis of the field. The frequency of 
this precession, νL, is: 

q Bν e
L = 

4π m c0 

The possible transitions for the Zeeman effect occur for m changing ±1 or 0. If 
∆m = 0 there is a linear polarization parallel to the magnetic field. 

The change of energy due to the action of the magnetic field (∆E) it is an energy 
difference for ∆m = ±1. From quantum mechanics, the energy is: 
E h= ν
Then : ∆ =E h∆ν 

The frequency difference, Δv, is: 

∆ =ν mν L 

Then, the energy difference from the action of the magnetic field from a normal 
Zeeman effect is: 

∆ =E hmν L 

Since the resultant of the angular momentum about the magnetic field axis, JB  
(or JZ), is given by: 

mhJB = 
2π
 

J B = J cos ( J B  ,
 ) 
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Where (J,B) is the angle between the resultant angular momentum and the magnetic 
field. Then, ∆E becomes: 

E En m  − E , = 2 J cos ( ) ∆ =  πν J B,, +1 n m  L  

∆ =E E  + − E , = 2πν Jn m, 1 n m  L B  

Since the magnetic dipole moment resolved along the magnetic field, µB, is: 

B µ cos ( ) , µµ = B 

 q h   
µ m e 

B =  4π m c 0  
Then, ∆E can also be written as: 

∆ =E hmν L 

q Beν L = 
4π m c0 

q BeE hm∆ =  
4π m c0 

 hmq e 
E B∆ =  4π m c 0 
 
E BµB
∆ =  

∆ =  ( ) E Bµ cos B, µ 

Where m is the quantum magnetic quantum number, µ is the atom’s magnetic moment 
in the direction of the resultant angular momentum J and (B,µ) is the angle between 
B and µ. Both equations of ∆E are associated with the normal Zeeman effect. 

However, for the change of energy for the anomalous Zeeman effect, the Larmor 
frequency, νL, is replaced by gνL. Where g (Landé g-factor) is the separation factor 
(Landé 1923a,b). The change of energy due to the action of the magnetic field in the 
anomalous Zeeman effect is: 

E h  ν∆ = ∆  

∆ =ν mgν L 

∆ =E hmg ν L 

E L JB  π ν L B∆ = 2π νg J  cos ( ) = 2 g J  

The equation of the gyromagnetic ratio associated with atoms showing 
anomalous Zeeman effect is: 

qeγ = g 
2m c0 

Then, the atomic magnetic moment around the magnetic field B under anomalous 
Zeeman effect is: 

q mh  q h   
= e = mg eµ γ  J = gB B  2m c  2π 4π m c0  0  



 

 Table 12.2: Landé g-factor values for singlet and doublet Zeeman terms. 

Singlets Doublets 

Term s p d S p1 p2 d1 d2 … 

g 1 1 1 2 2/3 4/3 4/5 6/5 … 

 Table 12.3: The mg term (product of the magnetic quantum number and Landé g-factor) and Stern-
Gerlach deviation for some normal states. 

Stern-Gerlach Normal state mg deviation 

Singlet s term 0 | 

Doublet s term –1 1 | | 

Doublet p1 term –1/3 1/3 | | 

Doublet p2 term –6/3 –2/3 2/3 6/3 | | | | 

Triplet s term –2 0 2 | | | 

Quartet s term –3 –1 1 3 | | | | 
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The values of the magnetic quantum number are m = ± j, ± (j–1), ± (j–2). … 
The g-factor was empirically introduced by Landé to determine the Zeeman terms 
to any multiplet term (see equation below). In addition, the product mg gave the 
right splitting factors for the Zeeman terms (normal and anomalous multiplets). For 
example, the d2 doublet term for which l = 2, s = 1/2 and j = 5/2, the Landé g-factor 
is 6/5. 

( 1) s s  1) l l  1)( (j j  + +  + − +  g =1+ 
2 ( j j  +1) 

See Table 12.2 for the Landé g-factors according to Zeeman terms. 

See Table 12.3 for the relation between mg and Stern-Gerlach deviation (see 
next section). 

According to the core model, the product mg should correspond to the sum of 
the projection of the vector R (or L) on the external field B, |R| cos (R,B), and the 
projection of the vector K (or S) on the external field B, |K| cos (K,B). 

2π mg =  K cos , +K B R cos , R B ( ) ( ) h 
However, the observed result was an expected value 2 of the g factor which 

yielded: 

2π mg =  K cos K B , + 2 R cos , R B ( ) ( ) h 
This result suggested that the vector R precessed twice faster around B than 

K did. Due to this anomaly, either the Larmor’s theorem needed a modification 
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or a further rotation of the core electrons (associated with R) should be included. 
Moreover, the observed change in energy is: 

E ν L∆ = hmg 
q Be=ν L 4π m c0 

q Be 
E ∆ =  K cos ( ) K B  +, 2 R cos ( ) ,R B 2m c0 

Which means that the electron has additional energy due to the field B as (qe/2m0c)L 
and 2(qe/2m0c)S. 

3. Heisenberg’s core models 
After Landé’s work, Heisenberg developed his own core model (Heisenberg 1922) 
where he established that the valence electron should share half of its angular 
momentum with the core (supposedly not having any net angular momentum). He 
assigned half-integral values for the azimuthal quantum number while Bohr and 
Landé assigned integral values to the secondary quantum number. The core had ½ 
angular momentum (somehow equivalent to the electron spin of the alkali doublets). 
In his model, the electron’s angular momentum vector should move around the core’s 
angular momentum vector in a way that an internal magnetic field (Hint) was created. 
The interaction energy of the precession of the core was: 

∆ =E 1 hν L cos β 2 
Where νL is the Larmor frequency and β is the angle between electron’s angular 
momentum vector and the core’s angular momentum vector. 

This model had a relative success in describing the Paschen-Back effect and the 
anomalous Zeeman effect, but it failed for intermediate fields. Then, Heisenberg, 
along with Landé, developed his second core model starting from Landé’s analysis 
of the neon spectrum (Landé and Heisenberg 1924). They developed the branching 
process which is a building-up process of the angular momentum, but this process 
violated the Bohr’s building-up principle. 

4.  Pauli’s electron’s two foldness 
In some papers, Wolfgang Pauli is referred as Wolfgang Pauli Jr. since Pauli had his 
father’s name. Pauli and Heisenberg had the same doctoral advisor: Sommerfeld. 
Likewise Heisenberg, Pauli also worked with Born after his doctorate (Born and 
Pauli 1922). Pauli and Heisenberg worked together in the study of the quantum 
dynamics of wave field (Heisenberg and Pauli 1929, 1930). Pauli also gave a very 
important contribution to the matrix mechanics when he studied the spectrum of the 
hydrogen atom (Pauli 1926). Pauli also invented the 2 × 2 Pauli matrices as a basis 
of spin operators (Pauli 1927), but his most important contribution to the quantum 
mechanics was the exclusion principle (Pauli 1925a,b). 
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In 1923, Pauli followed a different path with respect to that Landé did in order to 
rationalize the anomalous Zeeman effect (Pauli 1923a,b). In this different path, Pauli 
did not use any model (such as the core model) of the empirical data and recovered 
the term values for the anomalous Zeeman effect from known values of the Paschen­
Back’s study (Paschen and Back 1912). Pauli calculated the mg splitting factors for 
several multiplets in strong fields where the magnetic quantum number is: 

m m  = k + mr 

m k = 0, ±1,...,  ±(k −1 )  
m r = ±1 2,..., ±(r −1 2  ) , or :mk = 0, ±1,...,  ±(r −1 2  )
Where mk is the quantum number of the orbital magnetic moment and mr is the 

quantum number of the core magnetic moment. 

Pauli calculated the Zeeman energy as:
 

∆ =E  (m k + 2 m h  r ) ωL = (2m − m k ) hν L 

Where once again the puzzling value 2 appeared in Zeeman energy which seems to 
violate Larmor’s theorem (in which an electron will not have any change in motion 
other than the Larmor precession when placed in a magnetic field). 

Pauli inferred that the deviation of the Larmor’s theorem would occur in heavy 
atoms where the relativistic change of mass has to be taken into account (Pauli 
1925a). 

mm = 0

1 −υ 2 c2 

The gyromagnetic ratio deviates from its normal values by a correction factor γ: 

m 2 
0 υ E γ  =  = 1  −  

m  c  2 =1  +
m c  2 =

0 

 
−1 2   
 

 α 2 Z 2 γ = 1+ 2  
 n k− + k 2 − α 2 Z 2  
 
   

2π q2
 

where :α = e 

hc 
For n = k = 1, the correction factor γ reduces to (Pauli 1925a): 

γ = 1−α 2 Z 2 

For the hydrogen atom (Z = 1), where the α2Z2 is negligible and the correction 
factor does not differ from 1 and hence there is no influence on the Zeeman splitting. 
But for high Z, the correction factor differs significantly from 1 and it leads to the 
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violation of the Larmor frequency. By neglecting higher powers of α2Z2  (for any 
values of n and k), we have γ as (Pauli 1925a): 

1 α 2Z 2 

γ =1−
2 n2 

Pauli’s g-factor for the anomalous Zeeman effect becomes: 

g =1 2  + ( γ −1  )δ
or : g =1+ γδ 

j( j  + +1) s(  s  + −1) l l  (  +1)  δ = 
2 j j  ( +1) 

However, Landé announced that thallium (Z = 90) has negligible relativistic 
correction factor which spoke against the assumption of the atomic core angular 
momentum. Other facts against the core angular momentum were listed by Pauli in 
a letter to Landé. Pauli stated: “In the alkalis, the valence electron alone makes the 
complex structure as well as the anomalous Zeeman effect. The contribution of the 
atomic core is out of question (also in other elements). In a puzzling, non-mechanical 
way, the valence electron (in the alkalis) manages to run about in two states with the 
same k but with different angular momenta” (Pauli 1979). Then, Pauli was sure 
that the atomic core did not influence the Zeeman effect. The way in which the 
valence electron could take two different states in alkalis with the same angular 
momentum k was referred as the electron’s two foldness (which later was known as 
the two-valuedness of the spin angular momentum). Pauli did not speak in terms of 
spin in 1924, but he was the first to abandon the concept of the core model for the 
explanation of the anomalous Zeeman effect. He was the first to consider that the 
valence electron alone could be responsible for the anomalous Zeeman effect. 
Pauli denoted k1 as the azimuthal quantum number and k2 as the magnitude of the 
relativistic correction, γ. He introduced the magnetic number, m, for the atom under 
a strong magnetic field. Since the core angular momentum was no more regarded, 
the doubling of the number of states was ascribed to the ‘two foldness’ of electron. 

5.  Pauli’s exclusion principle 
In 1925, based on Stoner’s work (Stoner 1924) and the ‘two foldness’ of electrons, 
Pauli established his own building-up principle for the atom’s electronic configuration 
(Pauli 1925b). Most importantly, in this work Pauli also established the exclusion 
principle where no electron can have equal values for all quantum numbers. In Pauli’s 
words: “There can never be two or more equivalent electrons of all quantum numbers 
n, k1, k2, m1 are the same. If an electron is present in the atom for which these 
quantum numbers (in an external field) have definite values, this state is ‘occupied’” 
(Pauli 1925b). In the next year, Heisenberg successfully used the exclusion principle 
for the helium atom (Heisenberg 1926). 

Pauli admitted that the exclusion rule lacked a firm theoretical foundation, i.e., it 
could not be proved even in 1948, when Pauli received the Nobel Prize. However, it 
was a natural observation of the anomalous Zeeman effect and Stoner’s work of the 



 

l −1 2  ≤ j l   ≤ +1 2 
l = 0,1, 2,3,... 

1j l= ± 
2 

For a single electron, j has two values, except 
3/2 give the separation of doublet terms p1 and p2. F
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building-up the electronic configuration of atoms (Stoner 1924). Fifteen years later, 
Pauli extended this principle to all fermions (Pauli 1940) and it took the same time 
to consolidate the exclusion principle. The history of the creation of the quantum 
electrodynamics, quantum field theory and quantum statistics is intertwined with the 
history of the exclusion principle. 

On the Landé’s core model, the core electrons of the alkalis would have angular 
momentum r = s = ½ which would explain the doublet on the Zeeman effect. If 
one suggests that instead of atomic core angular momentum, there is a spin which 
corresponds to one quantum rotation and there are two of these states differing in the 
inclination of the spin axis to the orbital plane, this explains the Zeeman effect for the 
alkalis (with a single valence electron). Then, we have: 

for l = 0. For l = 1, j = 1/2 and 
or l = 2, j = 3/2 and 5/2 give the 

separation of doublets of the terms d1, d2, and so on. 

6.  The discovery of the spin 
In 1922, Stern and Gerlach devised an experiment in which a gaseous silver beam 
(with a single valence electron) reached a non-uniform magnetic field which caused 
deflection of the original beam into two new ones (Fig. 12.1). As the title of their 
paper stated, they proved the directional quantization in a magnetic field (Gerlach 
and Stern 1922). As a result of their experiment, the existence of the two-valuedness 
electron has been proven. A very similar result was obtained by Phipps and Taylor 
using a hydrogen beam (with detailed information on how to obtain the atomic 
hydrogen) which reinforced Stern-Gerlach result (Phipps and Taylor 1927). However, 
Stern-Gerlach’s result was misunderstood in 1922. It was credited as confirming the 
space-quantization and Bohr-Sommerfeld model (the distance between the two lines 
corresponded to a value of one Bohr magneton) and not the electron spin. Then, the 
experiment was not interpreted correctly at that time. 

In 1925, Uhlenbeck and Goudsmit pointed out that the application of the 
spinning of the electron could interpret the anomalous Zeeman  effect (Uhlenbeck 
and Goudsmit 1925,1926). The gyromagnetic ratio for the electron spin was twice the 
corresponding ratio for the orbital motion (that from the orbital angular momentum), 
that is: 

qγ e
s = 2 

2m c0 

In their hypotheses, the spin corresponded to a one-quantum rotation that led to 
two quantum states and the energy difference of these states is proportional to the 
fourth power of the nuclear charge. The doublets are a consequence of the coupling 
between the orbital angular momentum and the intrinsic angular momentum (spin). 
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Fig. 12.1: Schematic representation of Stern-Gerlach experiment. 

In 1926, Heisenberg and Jordan analyzed the doublet fine structure and the 
anomalous Zeeman effect using matrix mechanics (Heisenberg and Jordan 1926). 
The Hamiltonian function is: 

H H  + H + H + H= 0 1 2 3
 

2
1 2 2 q ZeH = ( p + p ) −0 x y2m r 
2 2 2where : r = x + y 

H1 = 
qe H (k + 2s)

2m c0 
2q Z  1eH = ks2 2 2 32m c  r0 

1  2 2 1 4 2 1 H = −  E + 2q ZE  + q Z3 2  0 e 0 e 2 2m c  r r0   

The vector s is associated with the spin angular momentum and the vector k is 
associated with the orbital angular momentum. The Hamiltonian H0 is relative to 
the non-perturbated system. The Hamiltonian H1 is the Larmor-violating magnetic 
interaction energy with the anomalous factor 2, while the Hamiltonian H2 is 
associated with the Larmor precession and the Hamiltonian H3 is the relativistic mass 
variability additional energy. Then, they artificially included the spin operator and 
the anomalous factor 2 in the Hamiltonian in order to obtain the expected result for 
the anomalous Zeeman effect. 

At first, Pauli disliked the idea of the electron spin because it brought back the 
classical model to the quantum mechanics. But in the next year, he recognized that 
the work of Uhlenbeck and Goudsmit helped to connect the exclusion principle to 
the idea of spin. 

7. Pauli’s work on spin 
In 1927, Pauli repeated Fermi’s calculations using quantized ideal gas (Fermi 1926) 
and investigated its magnetic behavior where the results were in accordance with 
experimental values for alkali metals (Pauli 1927). Pauli introduced the sz spin 
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variable along with qk spatial coordinates in the wave function ψ(qk,sz) leading to 
two components ψα(qk) and ψβ(qk) corresponding to the wave functions with +1/2
and –1/2 spin values, respectively. The probability density of the quantum states in 
the interval (qk,qk + dqk) with spin either up or down is: 

P (↑ =) ψα ( q k ) 
2 

dqτ

P ( ) 2
↓ = ψ β ( q k ) dqτ

The electron spin state, ψ, can be written as a linear combination of two states 
ψα and ψβ. 

 c 
ψ = c α 

αψα + cβψ β → =ψ  
cβ 

The normalization condition for the wave function is: 

∫ψ ψ* dqτ =∫{ 2 2
ψ α + ψ β }dq τ =1

where :ψ α =ψ α (q k ) ,ψ β =ψ β (qk ) 
* ( * * ) c   

or :ψ ψ = c α 2
α cβ   = c  + c 

2 

α β =1
cβ   

And the orthogonality relation is: 

∫ (ψ ψ * 
α ,n α ,m +ψ β ,n  ψ

* 
β ,m  )dqτ = 0,  n ≠ m 

The spin operator S is a vector matrix that has to respect the following relation: 

S2 = 2 s s  ( +1 ,  ) s = 1
2 

The relations involving the components of the spin operator S, known as spin 
projection operators Sx, Sy and Sz, are: 

S Sx y − S y x  S  = 2iS z ,..., 
where : S Sx y  = −S y x  S  = iS z

S 2 + S 2 + S 2x y z = 3

They are measured in the unit h/4π. The linear transformations of the components 
of the operator S in the wave function are: 

S x (ψ α ) =ψ β , S x (ψ β ) =ψα 

S y (ψ α ) = −i ψ β , S y (ψ β ) = i ψ α

S z (ψ  α ) =ψα , S z (ψ  β ) = −ψ β 

 
 
 



 320 Quantum Mechanics: Detailed Historical, Mathematical and Computational Approaches 

Which can be represented in matrix form (Pauli matrix) as: 

0 1Sx (ψ ) =  ψ
1 0
 

0 −i 
S y (ψ ) =  ψ
 i 0 
 

1 0  
S z (ψ ) =  ψ 
0 −1 

Another way to represent the Pauli matrices are given below where the unit of 
each component is included. 

  0 1Sx = σ x =  2 2 1 0
 

  0 −i 
S y = σ y =  2 2  i 0  

  1 0  S z = σ z =  2 2 0 −1

And they satisfy the relations: 

1 0
σ 2 

µ =   = I , (µ = x, y z  , )
0 1 

σµσν  +  σ σν µ = 0,  (µ ≠ν ; µ ν,  = x, y z  , )

Their determinants and traces are: 
det σµ = −1 
trσµ = 0 

The commutators of the Pauli matrices are: 

 σ σ,  = 2iσ x y  z

 σ σ y , z  = 2iσ x

[σ σz , x
 ] = 2iσ y

[σ σx ,
 x ] = 0 
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The commutative property between Sx and Sy 

1 2 0 1 0 −i 1 2 0 −i 0 1
S S  x , y  = S S  S S  x y − y x  =      −       4 1 0  i 0 4 i 0  1 0        

1 2  i 0  1 2 −i 0 1 2  i 0     −i 0
 , =  −  =S S 

 − x y          4 0 −i 4 0 i 4 0 −i 0 i         

1 2 i − −  ( )i 0  1 2 2i 0  1  i 0 
 , =  =  = 2 
 x y      S S 

4  0 i i 4  0 −2i 2 0 −i− − 
  

i 1 0  

 x , =  = iS zS S y  

2 
 2 0 −1  

The derivation of the Pauli matrix in z-axis, σz, is simpler than in x-axis and 
y-axis, σx and σy, where it is necessary to use raising and lowering operators. 

 1 
Szα = α ⇒ α =  2 0   

 a b   1 
  1 

=      c d 0 2 0        

a 

    2 ⇒ =  ,c = 0= a    c 0 2      

 0 
S β = − β β⇒ =z  2 1   

 a b   0 
  0 

= −      c d 1 2 1        

b  0    

⇒ =  c  =  
  b 0, = −

d − 2    2  

 1 0  
 
Z = 
S 

2 0 −1
 

The Schrödinger equations for the two spin states are: 

 h ∂ 
H k , ,  ψ α , q s sx y , sz  E , = Eψα
 

 2π i ∂qk 
 

 h ∂ 
H qk , ,  s ψ β , s sx y , z  E , = Eψ β
 

 2π i ∂qk 
 

Pauli used the same Hamiltonian function from Heisenberg and Jordan’s paper 
(Heisenberg and Jordan 1926). 
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H H  + H + H + H= 0 1 2 3 

2 2
 
2 e
1 h q ZH0 = −  ∇ −

2 4 m π 2 r 
eH1 = 

2 
q 

0 

H (k + 2s)
m c  

2q Ze 1H = ks2 2 2 32 0 rm c  
1  2 2 1 4 2 1 H = − E + 2q ZE  + q Z3 2  0 e 0 e 2 2 0 r r m c   

∂ ∂ ∂ ∂where : kx = y − z , ky = z − x 
∂z ∂y ∂x ∂z
 

∂ ∂
kz = x − y
∂y ∂x 

Although Pauli’s introduction of the spin half-integral in the wave function and 
the relativistic correction of the Hamiltonian were done artificially, this work was 
very important to Dirac’s work. He used the Pauli matrices to form the relativistic 
wave equation where the spin appeared naturally (see next section). 

8. Dirac’s work on spin and Dirac equation 
The Dirac equation is a relativistic wave equation which describes the electron-spin. 
Whereas Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics can be 
considered as free field theory, Dirac included both the electromagnetic field and 
electric charge matter as quantum mechanical variables. The wave functions of Dirac 
equation are vector of four complex numbers, bispinors. The Dirac equation can be 
written as: 

3 ∂ψ q t, 2  ( ) βmc + α p ψ ( )  c∑ n n   q t , = i 
 n=1  ∂t 

Where β, α1, α2, and α3 are 4 × 4 Hermitian matrices of the wave function and 
they are the spin-up electron, spin-down electron, spin-up positron and spin-down 
positron. 

Dirac stated in 1928: “In the present paper it is shown that this is the case, 
the incompleteness of the previous theories (Pauli’s work in 1927 and Heisenberg 
and Jordan’s work in 1926 of the previous sections) lying in their disagreement 
with relativity, or alternatively, with the general transformation theory of quantum 
mechanics. It appears that the simplest Hamiltonian for a point-charge electron 
(without spin) satisfying the requirements of both relativity and the general 
transformation theory leads to an explanation of all duplexity without further 
assumption. All the same there is a great deal of truth in the spinning electron model” 
(Dirac 1928a). 
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The relativity Hamiltonian for a point electron moving in an arbitrary electro­
magnetic field with scalar potential A0 and vector potential A is (see Chapter eleven 
for the Dirac’s usage of F instead of H for the Hamiltonian): 

W qe 
2 

 qe 
2 

2 2F = + A + p + A + m c 0    0
 c c   c 
 

∂ ∂
W i , p = −i , r =1, 2,3 = 
∂t r ∂xr 

Where p is the momentum vector operator and W is the energy operator from 
Schrödinger’s time-dependent wave equation. The corresponding wave equation is. 

 2  ∂ qe 
2  ∂ qe  2 2i  m c  = 0Fψ =  i + A0 + −  + A + 0 ψ 

 c t∂ c  ∂x c  r   

If the wave functions ψ  and ψ  are the solutions, then the charge density and n m
current density associated with the transition m → n during emission and absorption 
radiation are (known as Gordon-Klein theorem): 

e   ∂ψ n ∂ψ m  ρ = − i ψ −ψ + 2eA ψ ψ mn 2  m n  0 m n2mc   ∂t ∂t   

e  e  
m ψ ψ nInm = − −i (ψ ψ∇ n −ψ n∇ψ m ) + 2 Am m 2m  c  

The corresponding Klein-Gordon equation is also a relativistic wave equation, 
but it is second-order in space and time (which brings some difficulties to its solution) 
and is invariant to Lorentz transformation and it describes the spinless particle field 
(Gordon 1926, Klein 1926). 

2  2 2 1 ∂ 2  m c
−  + ∇ φ = φ 2 2  2c t ∂  

Then, Dirac tried  an equation that was first-order in both space and time. Then, 
he expanded the square root of energy in an infinite series of space (x,y,z) and time 
(t). 

E 2 = c2 p 2  + m c  2 4 = c 2 ( p 2  + m c  2 2 ) 
E  = c  p  2  + m c2 2

2 1 ∂2  i  i  ∇ −    A∂ x + B∂ y + C ∂ +z  D∂ 2 2 = t  A∂ x + B∂ y + C ∂ +  D∂ c ∂t  c 
z 

 c t 
 

In order to get all cross-terms such as ∂ × ∂y to vanish is necessary to assume: 

AB + BA = 0, AC + CA = 0, AD + DA = 0,... 
A2 = B2 = ... =1 
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These conditions are met if A, B, C and D are matrices and, as a consequence, 
the wave function has four components. The corresponding wave equation becomes: 

2 2 i   i  2 m c  2A∂ + B∂ + C∂ +  D∂ A∂ + B∂ + C∂ +  D∂ ψ = ψ x y z t   x y z t  2
 c   c   

 i  mc 
 A∂ x + B∂ y + C∂ +  D t ψ = ψz ∂ 
 c   

A = iβα ,B = iβα ,C = iβα , D = β1 2 3 

Subsequently, Dirac questioned: “what is the probability of any dynamical 
variable at any specified time having a value lying between any specified limits when 
the system is represented by a given function ψm?” and he completed: “We should 
expect the interpretation of the relativity theory to be just as general as that of the 
non-relativity theory”. After he stated: “The wave equation of the relativity theory 
must also be linear in W if the general interpretation is to be possible”. Then, Dirac 
wanted to remove the difficulty that Gordon-Klein theorem can only answer about 
the position of the electron (by the use of ρmn) and not its momentum or angular 
momentum or any other dynamical variable. 

Then, Dirac stated in his paper that: “Our problem is to obtain a wave equation 
of the form (shown above) which shall be invariant under a Lorentz transformation 
and shall be equivalent to the time-dependent Schrödinger equation in the limit of 
large quantum numbers” where he paved his own way to solve this problem and 
found the spin naturally. Then he started with a simpler Hamiltonian without a field 
whose wave equation is: 

2 2  2 2(− +p p + m c  )ψ = 00 0 

W ∂where : p0 = = i 
c  c t∂ 

Then, due to “the symmetry between p0 and pr(r = 1,2,3) required by the relativity 
shows that since the Hamiltonian we want is linear in p0, it must also be linear in pr 
(r = 1,2,3)”, Dirac affirmed. The wave equation becomes: 

( p0 +α1 p1 +α2 p2 +α3 p3 + β ψ) = 0 

Which is similar to: 
 i  mc 
 A∂ + B∂ y + C∂ +  D∂t ψ = ψx z 
 c   

A = iβα ,B = iβα ,C = iβα , D = β1 2 3 

Dirac used the dynamical variables αr(r = 1,2,3) and β which are independent 
of p0 and pr(r = 1,2,3), that is, they commute with x,y,z,t. The αr(r = 1,2,3) and β 
are also independent of x,y,z,t, and commute with p0 and pr. Then, it is necessary 
to have other dynamical variables in the wave function besides the coordinates and 
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momentum of the electron in order that αr(r = 1,2,3) and β may be function of them. 
The above equation becomes: 

0  = (− p 0 +α 1 p 1 +α 2 p 2 +α 3 p 3 + β )( p 0 +α 1 p 1 +α 2 p 2 +α 3 p 3 + β )ψ  =  

⇒ − p 2 + ∑α 2 2 
0 1 p 1 + ∑ (α α  α 2

1 +α  2  ) p p1 2 + β  2 1 + ∑(α 1 β + βα1 ) p 1 ψ =  0 

α 2 
r  =1, αrα s   +α αs r   = 0(r ≠ s) , r s  , =1, 2,3 

β 2  = m c  2 2 , α r β + βα r = 0

The conditions above are established so that the cross-terms are vanished (as 
above-mentioned). 
which are used in the wave function along with the ordinary variables xr and t. The 
variables αr’s have some conditions that are similar to those of Pauli’s matrices 
which are then used in Dirac’s work. However, since there are three variables  
αr (r = 1,2,3), it is needed to extend the Pauli’s matrices in a diagonal manner in two 
more rows and columns in order to introduce three more matrices. They are: 

0 1 0 0 0 −i 0 0  1 0 0 0 
 
     
1 0 0 0  i 0 0 0 0 −1 0 0

σ      
1 = , σ = ,σ = 

0 0 0 1   2 0 0 0 −i  3 0 0 1 0  
     
0 0 1 0  0 0 i 0   0 0 0 −1 

0 0 1 0 0 0  −i 0  1 0 0 0 
 
     
0 0 0 1  0 0  0  −i 0 1 0 0

=      ,  ρ1 ρ
1 0 0 0 2 = , ρ =

 i 0 0 0  3 0 0  −1 0 
 
     

0 1 0 0   0  i 0  0    0 0 0  −1 

The wave equation takes the form: 

 + ρ σ + ρ   p 0 1 ( , p ) 3 m c  0 ψ = 0

Where p and ρ are 4 × 4 matrices. 
In the next section of his paper, Dirac proved the invariance under Lorentz 

transformation (see chapter nine) for the Hamiltonian without the field A: 
Hereafter, he used the Hamiltonian for an arbitrary electro-magnetic field A: 

 qe  qe   
p + A + ρ σ,p + A  + ρ3 m c  0   0 0 1  ψ = 0
 c  c   

The invariance of the Lorentz transformation also occurred in the Hamiltonian 
above. When compared to the first relativity wave equation presented in his work, a 
derived version of the Hamiltonian above had two the additional terms in F: 

q h  e iq h  (σ , H ) + e ρ (σ , E )
c c 1 
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that when divided by a factor 2m0, can be regarded as the additional potential energy 
of the electron due to its new degree of freedom (i.e., the spin). The electron will 
therefore have a magnetic moment, MB and an electric moment, ME: 

q hM e
B = σ

2m c0 

iq eh M E = ρ
m c 1σ2 0 

And this magnetic moment is assumed as the spinning of the electron and the 
electric moment is purely imaginary and does not appear in the model. 

Recently, four-spinor Dirac equation has been used for the helium atom 
(Nascimento and Fonseca 2016). The authors used approximate solutions for this 
equation. 
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 Boltzmann and 
Fermi-Dirac Statistics 13 
1. Boltzmann distribution (for distinguished particles) 
Boltzmann distribution played an important role to obtain the Planck’s law of the 
spectral radiance of the thermal black-body experiment and its derivation from 
Einstein’s equipartition (see Chapter six). 

A macrostate is a thermally isolated system with a thermal equilibrium at 
temperature T and it is an assembly of N identical distinguishable (localized) particles 
contained in a fixed volume V and having a fixed internal energy U. Important to add 
that N is also the total number of weakly interacting particles. 

One axiom of Boltzmann statistics is that identical particles that cannot be 
infinitely close to each other can be distinguished by their initial conditions and by 
the continuity of their motions. This axiom leads to the term of a gas with energy 
U consisting of “N identical distinguishable molecules”. Let e1 be the energy of n1 
particles, ..., ei be the energy of ni particles, so that the total sum of niei (total energy, 
U) and total sum of ni (N) are constant. 

n e = U ∴ n N  =∑ i i  ∑ i 
i i 

For a given (N, V, U, T, p) macrostate there are huge amount of microstates (a 
cell with a number of particles with the same energy). The microstate specifies the 
state of each particle of the system while the macrostate specifies the state of the 
whole system (N, V, U, T, p). 

Each microstate has a distribution of the particles {ni}, where ni is the number of 
particles in the ith state having energy ei. The distribution {ni} indicates the number 
of particles in each level of energy 0 (n0), e (n1), 2e (n2), and so on. But, there is a 
distribution, {ni*}, that is overwhelmingly more probable than any other distribution. 
The statistical weight of the distribution {ni}, W, is given below: 

N !W = , N =∑ni∏ni ! i
 
i
 

Let us take the logarithm of W: 

lnW = ln N !−∑ ln ni ! 
i 
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By using Stirling’s approximation in order to eliminate the factorials, we have: 

ln W = (N ln N N  − ) − ∑( n i ln ni − ni )
i 

For a particular fluctuation of configurations, there is one with largest W. The 
configuration with largest W is dominant and usually the properties of the system are 
determined by the dominant configuration. At maximum value of W, named W*, any 
infinitesimal addition vanishes, that is, d ln W* = 0. 

for : d lnW * = 0 
d lnW *  = 0 −∑dni (ln ni + ni ni − =1) −∑ ln n * 

i dn i  = 0
i i 

where : dN = 0 

Where ni* is the distribution for W*. The above relation has to follow two restrictions: 

d ( )  U =∑e idni = 0
i 

d (N ) =∑dni = 0 
i 

Then, we use Lagrange method of undetermined multipliers to deal with a 
restricted maximum. Since the addition of any arbitrary multiples (say α and βei) do 
not change the result zero, then we have: 

∑(− ln n*
i +α + βe i )dni  = 0 

i 

Where α and β are constants. For the above sum gives result zero, each individual 
term of the sum must have a result zero. Then, we have: 

− ln n* 
i +α + βe i  = 0 

The above equation can be written as: 
n* 

i = exp (α + βe i ) 
The above relation is the Boltzmann distribution.
 
Now, let us determine α using the above expression and the expression for N:
 

N =∑ni =∑exp (α + βe i ) = exp α∑exp (βe i ) 
i i i 

A = exp α
 

N A= ∑exp (βe i )

i 

Where A is the normalization constant for the distribution so that the distribution 
describes the correct number of N particles. From the above equation, we have: 

N NA = =
∑

 
exp (βe i ) Z 

i 

where : Z =∑exp (βe i ) 
i 
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Then, the Boltzmann distribution becomes: 

N exp (βe )n* 
i = Aexp ( )  

βe i = i 

Z 
Now, let us determine the value of β: 

d (lnW * ) = −∑ ln  n  *i dn i = −∑(α + βe i )dni
 
i i
 

where : ln n* 
i =α + βe i 

d (lnW * ) = −β∑  e idn i , N   = fixed 
i 

d (lnW	 * ) = −βdU  = −β (T dS  ) 
S k= B ln W → dS k= B d  (lnW )
d (lnW * ) = −β Tk B d (lnW )

1then : β = − 
TkB 

The Boltzmann distribution becomes: 
k T  

n * N exp (−e
= i B )

i ∑exp (−e i k T  B
 )
i
 

2.  Fermi-Dirac statistics (for undistinguishable particles) 
Unlike Boltzmann’s approach, Fermi ascribed quantum numbers to molecules of an 
ideal gas and also used Pauli’s exclusion principle which led to a different statistical 
distribution of the particles. 

Fermi calculated the specific heat and the energy distribution of an ideal gas 
whose motion was quantized as a collection of harmonic oscillators where the 
monoatomic elements (where he used the term ‘molecule’) were not distinguishable 
from each other (Fermi 1926). He performed the quantization  of the motion by 
applying Sommerfeld’s rules to the monoatomic gases (molecules). An attractive 
force toward a fixed point O acts on the molecules so that each atom becomes a 
single spatial harmonic oscillator with frequency ν. The orbit of each molecule 
is characterized by three quantum numbers s1, s2  and s3  and Fermi used Pauli’s 
exclusion principle to state that no pair of molecules could have the same quantum 
numbers s1, s2 and s3. In this model, the energy of each set of molecules according to 
the number of modes Qs (number of molecules with the same energy) are: 
E = h sν 

s s= 1 + s 2 + s3
 

Q = 1

s 2 (s +1)( s + 2) 

if : s =1, E = hν ,Qs = 3 
if : s = 2,  E = 2hν ,Qs = 6 
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Fermi considered the limiting case of having N molecules at zero temperature. 
If there was no restriction on the number of molecules that can have the same energy, 
all molecules would be in the state of zero energy. Instead, since its not possible to 
have more than one molecule with all three quantum numbers equal to zero (s = 0 
and E = 0), only one molecule will have E =0. If N = 10, one molecule will have 
E = 0, three molecules will have E = hν (each molecule with, at least, two different 
values of s1, s2 and s3), and six molecules will have six places of energy 2 hν. While 
Fermi used monoatomic gases, Dirac worked on a single many-electron atom. 

In 1926, Dirac gave an excellent explanation with respect to the treatment of 
many-particle system that it is worthy to reproduce it here paying attention that n and 
m refer to the principal quantum number related to the ‘orbit’, the term most used 
at that time and he referred to the Heisenberg quantum mechanics as a theoretical 
reference. Dirac stated (Dirac 1926): 

“Consider now a system that contains two or more similar particles, say, for 
definiteness, an atom with two electrons. Denote by (nm) that state of the atom in 
which one electron is in an orbit labelled m, and the other in the orbit n. The question 
arises whether the two states (mn) and (nm), which are physically indistinguishable 
as they differ only by the interchange of the two electrons, are to be counted as two 
different states or as only one state, i.e., do they give rise to two rows and columns 
in the matrices (from matrix mechanics) or to only one? If the first alternative is 
right, then the theory would enable one to calculate the intensities due to the two 
transitions (mn)→(m´n´) and (nm)→(n´m´) separately (…). The two transitions are, 
however, physically indistinguishable, and only the sum of the intensities for the two 
together could be determined experimentally. Hence, in order to keep the essential 
characteristic of the theory (Heisenberg’s matrix mechanics) that it shall enable one 
to calculate only observable quantities, one must adopt the second alternative that 
(mn) and (nm) count as only one state. 

This alternative, though, also leads to difficulties. The symmetry between the 
two electrons require that the amplitude associated with the transition (mn)→(m´n´) 
of x1, a coordinate of one of the electrons, shall equal the amplitude with the transition 
(nm)→(n´m´) of x2, the corresponding coordinate of the other electron (…). If we 
now count (mn) and (nm) as both defining the same row and column of the matrices, 
and similarly for (m´n´) and (n´m´), equation: x1(mn; m´n´) = x2 (nm; n´m´) shows 
that each element of the matrix x1 equal the corresponding element of the matrix x2 so 
that should have the matrix equation: x1 = x2. This relation is obviously impossible, 
as, amongst other things, it is inconsistent with the quantum conditions. We must 
infer that unsymmetrical functions of the coordinates (and momenta) of the two 
electrons cannot be represented by matrices. Symmetrical functions, such as the total 
polarization of the atom, can be considered to be represented by matrices without 
inconsistency, and these matrices are by themselves sufficient to determine all the 
physical properties of the system. 

(…)If we neglect the interaction between the two electrons, then we can obtain 
the eigenfunctions for the whole atom simply by multiplying the eigenfunctions for 
one electron when it exists alone in the atom by the eigenfunctions for the other 
electron alone, and taking the same time variable for each. Thus if ψn(x,y,z,t) is the 
eigenfunction for a single electron in the orbit n, then the eigenfunction for the whole 
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atom in the state (mn) is: ψm(x1,y1,z1,t)ψn(x2,y2,z2,t) = ψm(1)ψn(2), say, where x1, y1, 
z1 and x2, y2, z2 are the coordinates of the two electrons, ψ(r) means ψ(xr,yr,zr,t). The 
eigenfunction ψm(2)ψn(1), however, corresponds to the same state of the atom if we 
count the (mn) and (nm) states as identical. (…) If we are to have only one row and 
column in the matrices corresponding to both (mn) and (nm), we must find a set of 
eigenfunctions ψmn of the form: ψmn = amnψm(1)ψn(2) + bmnψm(2)ψn(1), where amn‘s 
and bmn‘s are constants, which set must contain only one ψmn corresponding to both 
(mn) and (nm), and must be sufficient. (…) we may take amn= –bmn which makes 
ψmn= antisymmetrical (…) and only antisymmetrical eigenfunctions will be required 
for its expansion. Thus the symmetrical eigenfunctions alone or the antisymmetrical 
eigenfunctions alone give a complete solution to the problem. The theory at present 
is uncapable of deciding which solution is the correct one. (…) For r non-interacting 
electrons with coordinates x1,y1,z1,…,xr,yr,zr, the symmetrical eigenfunctions are: 
Σα1,…,αrψn1(α1),…,ψnr(αr), where α1,…,αr are any permutation of the integers 
1, 2, …, r, while the unsymmetrical ones may be written in the determinantal form: 

(1) ψ (2)  ψ rψ ( ) n n n1 1 1 

(1) ψ (2)  ψ rψ ( ) n n n2 2 2 

   

(1) ψ (2)  ψ rψ ( ) n n nr r r 

(…) An antisymmetrical eigenfunction vanishes identically when two of the 
electrons are in the same orbit. This means that in the solution of the problem with 
antisymmetrical eigenfunctions there can be no stationary state with two or more 
electrons in the same orbit, which is just Pauli’s exclusion principle. The solution 
with symmetrical eigenfunctions, on the other hand, allows any number of electrons 
to be in the same orbit, so that this solution cannot be the correct one for the problem 
of electrons in an atom” (Dirac 1926). 

Dirac, along with Heisenberg, was the first to mention the determinantal form 
of the wave function for many-electron atoms, although it is popularly known as 
Slater’s determinant who used it three years later (Slater 1929). Dirac also applied 
this result to ideal monoatomic gas molecules which are represented as a product of 
single molecules. If the assembly of molecules was symmetrized, it follows Bose-
Einstein statistics. Otherwise, the assembly of molecules was antisymmetrized and it 
follows Fermi-Dirac statistics. 
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One-particle Quantum 
Harmonic Oscillator 14 
1.  Classical harmonic oscillator 
The classical harmonic oscillator is a physical system where a body of mass m is 
fixed to a spring whose other extreme is fixed to a wall or two bodies of masses m1  
and m2  each one fixed at each extreme of the spring and having a one-dimensional 
displacement (Fig. 14.1). 

In the simple classical harmonic oscillator, the restoring force depends on the 
spring constant, k, and the displacement x from the equilibrium point (where this 
force is zero). 

F = −k x 
The potential energy formula, V(x), of the simple classical harmonic oscillator is: 

dV ( )x 
= − F x  ( )

dx 
x=− x k 2V ( )  x = ∫ (−kx ) dx = x
x=0 2

At the equilibrium position, x0, V(x0) is zero and the kinetic energy is maximum. 
At the extremes of the oscillation, the potential energy is maximum while kinetic 
energy is zero. The total energy (potential energy plus kinetic energy) along the 
whole range of oscillation is constant, but each component describes a parabola 
along the x axis. 

Fig. 14.1: Schematic representations of (a) one-body harmonic oscillator and two-body harmonic 
oscillator. 
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Since the force is also the product of the mass of the body and the acceleration, 
then we have: 
  d 2 xF = ma = m 

dt 2 

  
F = − k x  

d 2 x m 2 = − kx 
dt 

d 2 x k
= − x

dt 2 m 
d 2 x k 

2 + x = 0 
dt m 

The last equation above is a second-order differential equation of the general 
type below (See Section 3 of the Chapter four): 

d 2 y dy 
 

dx 2 + a + by = 0
dx 

Whose general solution is: 

y = elx 
 

1 
 2 l = − a ± a − 4b 
2   

Where the discriminant for the general solution (a2–4b) is lower than zero : 

a = 0,  b > 0,  a2 − 4b < 0 

Then, for negative discriminant, we have the following general solutions: 

for : a2 − 4b < 0 

y = e  x ( c e  ix 
1 + c2 e  −ix )

y = e x (d1 cos x d+ 2 sin x) 
In the specific case where the ratio k/m can be replaced by w2, we have the 

following general solution. Remember that in the case of the harmonic oscillator, y 
is replaced by x and x is replaced by t (see Section 3 of Chapter four): 

w 2 k 
= 

m 
y → x , x → t 
x( )  t  = c e  iwt 

1 + c2 e  −iwt

x t( ) = d1 cos wt + d2 sin wt 
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From the trigonometric relations below: 

sin ( A B+ ) = sin Acos B + cos Asin B 

a sin θ + bsin θ = R (sin θ a+ )
b

 R = a 2 + b 2 , a = arctan 
a 

We have the last general solution can be rewritten as: 

x t( ) = R  sin (w ⋅ +t a )
w = 2pn 

Where R is the amplitude (or the maximum displacement from the equilibrium 
position), w is the angular frequency, n is the vibrational frequency and a is the 
phase angle. 

Let us establish an important relation involving the vibrational frequency from 
the important relation ω2  = k/m to solve the corresponding differential equation and 
the relation between linear and angular frequencies. 
As : 

k w 2 = 
m 

w = 2pn 

Then : 
w 2  = 4p n2 2 

and : 
k 

= 4p n2 2 
m 
k = 4p n2 2 m 

1 1V = kx 2 = 2p n2 2 mx 2 = w 2mx2

2 2 
The total energy is the sum of the kinetic energy and potential energy of the 

classical harmonic oscillator. This is the classical Hamiltonian, H. 

p2  kx  2 p2  mw 2 2xH = T U  + =  + = +
2m 2 2m 2 

Where m is the mass of the body attached to the massless spring and p is the linear 
momentum. 

2.  One-particle quantum harmonic oscillator 
In Chapter nine, we have shown the solution for the quantum harmonic oscillator 
using matrix mechanics. The one-particle harmonic oscillator is the Lorentz model 
for the hydrogen-like atom discussed in the chapters of the old quantum mechanics 
and matrix mechanics. Here, we show the solution using wave quantum mechanics. 
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In the one-particle quantum harmonic oscillator, we change the one body attached 

to spring into one particle under the influence of the parabolic potential energy in its 

displacement along the axis x. 

The quantum Hamiltonian of harmonic oscillator is (see Chapter ten):
 



2 d 2 1 2 dH = −  2 + kx , p = −i
2m dx 2 dx 

Then, the Schrödinger equation of the one-particle quantum harmonic oscillator is: 

 


2 d 2 1 2  
 − 2 + kx   y ( )  x = E y ( )x
 2m dx 2  

or: 

 
 2 d 2 2  2 2   

 −     
 2m dx2 + 2p nm x  y ( )x = Ey ( )x

 

The above equation has two dimensional physical quantities: energy E and 
length x. Let us undimensionalize the above equation. Table 14.1 shows the physical 
quantities and corresponding units (in SI) related to the one particle quantum 
harmonic oscillator. 
The dimensionless energy, e, is given by the expression: 

E E e = = 
2pn w 

kg ⋅ m 2 ⋅ s −2     2p  e = =
kg ⋅ m 2 ⋅ ( 1  2p ) − ⋅ s −1  ⋅ rad ⋅ s −1   rad 
   

The dimensionless length, y, is given by the expression: 

2pn m wm y = x = x 
  

 ⋅ −1  rad s [kg ] 
y = ⋅ [m] 

m 2 ⋅ kg ⋅ (2p ) −1 s −1 
 

 2p ⋅ rad  y = ⋅ [m ] =  ⋅ 2p ad  2   r  m  

Then, we have to rearrange the Schrödinger equation in order to replace E into 
e and x into y. 
By multiplying the above equation by –2 m/ℏ2, we have: 

 d 2  4p 2  m 2n 2 2x  2m
 2 −
 dx 2 y  ( )  x  = − E xy 2 ( )

  

 

 



 

 

 Table 14.1: Physical quantities and corresponding units in SI. 

Physical quantity unit 

Energy (E) kg.m2.s–2 

Angular frequency (w) rad.s–1 

Length (x) m 
Mass (m) kg 
Planck’s constant (h) kg.m2.s–1 
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Let us rearrange the equation above: 

 d 2  2m 4p 2  m 2n 2 2x 
 +   
 dx 2 

2 E − 2 y ( )  x = 0
  

 d 2  2m 2p n 2   m   +  E − x 2  y ( )x = 0
    
 dx 2 

  
2    

    

Let us use now two dummy variables: a and b. 

2m 2p nm b = 2 E , a = 
  

 d 2 
2 2   

 2 + b   −a x   y ( )  x  = 0
 dx  

Let us divide the above equation by a to obtain: 

 1 d 2  b 2  
 2 +  −a x  Ψ( )  x  = 0
a  dx  a 

The ratio b/2a is equivalent to the dimensionless energy: 
2mE 

2 
1 b e = 2 = 

a 4pn m 
 

E e = 
2pn  

Then, we have: 

 1 d 2  
 + (2e a− x 2 ) Ψ( )x  = 0 
a  dx2 

 

Let us change the variable x into y = a1/2x to obtain: 

y = a ⋅ x , y2 = a ⋅ x2 

then : 

 1 d 2
 2 + (  

2  e − y 2 ) Ψ( )x  = 0
a dx  
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Let us complete the substitution of x into y in the whole equation: 

d y ( )x d y (y )  dy
= 

dx dy dx 

y = a ⋅ x 
dy ( )x dy (y)  

= a
dx dy 

 dy ( )  x 
2 d 2y ( )  x d 2y (y)  

= = a     dx  dx 2 dy 2

Then, we have: 
y ''(  y )  + (2e − y2 )y (y  )  = 0 

Let us now analyze the extreme positions of the above differential equation. 
For small values of energy E, e is small and the term y2 dominates. Then, we can 
approximate the equation above to: 

y ' '( y) − y2y ( y) = 0 

The same approximation above is obtained for the amplitude of the vibration, y, 
going to the infinite. 
The last equation is a second order differential equation of the type: 

d 2 y dy 
2 + a + by  = 0

dx dx 
Where: 

a = 0,  b = − y2 

then : a2 − 4b > 0 
The general solution for the discriminant a2–4b > 0 is (see Chapter four): 

y = c e  l1  x + c e  l 2 x
1 2 

Then, for: 
y ' '( y) − y2y ( y) = 0 

We have the general solution (see Chapter four): 

y ( y) = ety 

Where t is similar to l in Chapter four. Then, we have: 

d e2 ( ty ) 
= t 2 e  ty

dy2 
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Replace the relations above into the differential equation: 

y ''(y )  − y2  y (y )  = 0 
t 2 e  ty − y e  2  ty = 0 
t 2 − y2  = 0 
( t − y t  )( + y  ) = 0 
t = y , t = − y 
then : 

y (y )  = Ae y 2 

+ Be − y2 

A c= 1 , B = c2 

The coefficient A must be zero because y(y) must remain finite for all values of 
y in order to allow the normalization. Then, the general solution is: 

y (y )  = Be − y2

The coefficient B must guarantee that the wave function is zero when y goes to 
infinity. Then, B must be a function (g(y)) instead of a constant. However, we can 
anticipate that we won’t find g(y) with this general solution. Then, we have to change 
slightly the general solution to: 

2
− y 

y   ( y) = g( y)e 2 

In order to find g(y), let us differentiate the equation above: 
2 2 

y '(y )  =
y y 

  g '(y e  )  − −2 − yg  (y e  )   2

Let us differentiate the above equation: 
2 2 2

y ''(y ) = ) − y 

 g ''( y e   2 − yg  '(y e  ) − y − y
2 − g  (y e  ) 2

2 2 

− − y y

 yg  '(  y e  )   + y2 g  (y e  )  − 2 2

2 2 2 2

y ( )  ' y e  − y y y y

 '' y = g ' (  )   − 2yg  '(y e  )  − − g  (y e  )  − −2 2 2 + y2 g  (y e  )  2

2 

y ''(y )  =  −g ''(  y )   2yg  '(y )  − g y  ( )  + y2 g y  ( )   e −
y  

 
2
 

2
 

y ''(y ) =  ' ) −g '( y  2 yg '(y ) + ( y2 −1) g( y )  − 

 e 
y 
2

Let us substitute the above y(y) and y‘’(y) equations into: 
y ''( y ) + (2e − y2 )y (y  ) = 0 
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Then, we get: 
2 

g ''(y ) − 2 yg '(y ) + ( y 2 − 1) g(y )  e −
y + 
2 

 +(  2 
2  2 e − y ) g(y e  )  −

y  2  = 0   

[
2 

g ''(y ) − 2 yg '(y ) + (2 e −1) ( ) ] 
y

 g y e −  2 = 0 

The general Hermite equation (see Chapter four) is: 

y ''− 2xy '+ 2m  y = 0 

We can see that: 
g ''(y ) − 2 yg '(y ) + (2 e −1) g( y  ) = 0 

is a Hermite equation, H(y), where m = 2e–1. Then, the solution is: 
2 

y (y )  = H  (y e  )  −
y  2

H (y )  = g ''(  y )  − 2yg '( )  y + (2  e − 1)  g(y )  = 0

The normalized wave function becomes: 
2
 

y (y)  = N 2

n H  (y e  )  −

y  

1 aNn = 
2 !  n n p 

y2 = a x2 

The solutions for the Hermite differential equations are: 

n = 0,  H y  ( )  = 1 
n = 1, H y  ( ) = 2y
n  = 2,  H y( )  = 4y2 − 2 
n = 3, H y( ) = 8y3 −12y 
n = 4, H y  ( ) = 16y4 − 48 y  2 +12 

Let us now find the expression for the dimensionless energy e by using power 
series method (Chapter two). Then, we go back to the Hermitian differential equation 
below to find its solution for the power series method. 

2
 

y (y  )  = H (y e  )  −
y 
 2


H (y )  = g ''(  y )  − 2 yg '(y )  + (2  e − 1)  g(y )  = 0


Then, H(y) can be represented as: 
∞ 

H (y  ) = ∑a yn 
n , n = 0,1, 2,3,... 

n=0 



0

n
n

n
na y

∞

=

= ∑
1

n
n

n
na y

∞

=
∑
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Where n is an integer number. Let us find its first derivatives: 
∞
 

H '( y) = ∑na y n−1

n 

n=1 
∞
 

H ''( y  ) = ∑n n  ( −1) a y  n−2

n 

n=2 

Let us do the power equalization for the expressions above. For the summation 
of the first derivative, H’(y), if n starts at 0 or at 1 does not change the result since for 
n = 0 the second the corresponding term is zero. Then: 

∑
∞ 

na y nn–1 n
n = ∑

∞ 

na n
 y 
n=1 n=0
 

For the second derivative, H’’(y), let us change n to start at zero. 

for : n( n −1) 
n = 2 → 2(2 − =1) 2 
n = 3 → 3(3  − =1) 6 
for : ( n + 2)( n +1)
 
n = 0 → (0 + 2)(0  +1) = 2
  

n =1 → +(1 2)(1 +1) = 6  

then : n( n −1) =
n=2 

(n + 2)( n + 1)
n=0 

: ∑
∞ 

n(n −1) = ∑
∞

finally (n  + 2 )( n +1)
  
n=2 n=0
 

Hence: 
∞

H y''( ) =	   ∑( n + 2 )(n +1 )an+2 y
n 

n=0 

Let us substitute the derivatives above into the Hermite equation below: 

H (y )  = g ''(  y )  − 2 yg '( )  y + (2 e −1 ) g(y )  = 0

∑
∞	 

(
∞ ∞ 

 n + 2 )(n +1 ) an+2 y n − 2 ∑na y  n + 2e −1 a y  n
n ( )∑ n = 0

n=0	 n=0 n=0 

∑
∞

( n + 2	 )( n +1 ) an+2 − 2nan + (2 e −1) an yn = 0 
n=0 

Since y can be any value, then: 

( n + 2 )(n +1 ) a n +2 − 2na n + (2e −1 ) a n = 0

As a consequence, the recursion relation is: 

(2n + −1 2e )a n+2 = a 
( n +1 )(n + 2) n
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Then, we have the following H(y) equation: 

H ( y) = a a y 2 0 + a1y + 2 + a 3 4 5 3 y + a4 y + a5 y + ... 

If a0 and a1 are known, the whole equation H(y) is solved by the use of the above 
recursion relation of the power series method. 

From this point on, we need to concern whether the previous powers terminates/ 
converges or not. In last case, its sum goes to the infinity. Then, let us assume that 
this series does not terminate and check whether it will provide a reasonable wave 
function or not. Assuming the power series going to the infinity, i.e., for extremely 
large values of n, the recursion relation becomes: 
hypothesis : sum → ∞ 

i.e. : n → ∞ 

2n 2then : a n+2 ≈ a 2 n = an
n n 

The ratio between two successive even (or odd) terms in this series (for large n)  
is similar to that from the power series of the function exp(y2). 

a n + 2 
n + 2 y (2  n )a n 2

= y2 = y2

a n 
n y a n n

∞ 2n ∞ n 
exp(y 2 y y) = ∑ = 

n! ∑ (n / 2)! 
n=0 n:even 

y n + 2 (( n + 2 )/ 2)! 2 
= y2  

y n (n / 2)! n + 2 

Then, we can assume that in the hypothesis that the power series of the H(y) 
does not terminate (goes to the infinite), it approaches the function exp(y2). 

hypothesis : sum → ∞ 

i.e. : n → ∞ 

H ( y) = exp(y2) 

In this case, the overall wave function will be: 

hypothesis : sum → ∞ 

i.e. : n → ∞ 
2 2y y

y ( y) = y 2 − 
 e ⋅ e 2 = e 2 

This is a serious problem because the wave function will diverge and it cannot 
be normalized. Than, the hypothesis of the power series for H(y) does not terminate 
cannot be considered as a reasonable solution. 

Therefore, we have to assure that the power series for H(y) must terminate. 
Then, we can arrange that the term an+2, after a finite number of n, will be zero, the 
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next terms will also be zero, which means that the series will terminate. Then, for the 
series of H(y) terminate we need: 

( 2  n + −1 2  e  ) a n + 2 = a 
 ) n = 0

(n + 1 ( n + 2)
then : 2  n + −1 2 e = 0

2n +1 e = 
2 

Since the relation between e and E is: 
E e = , E = ew 
w 

We have the solution of the energy of the one-particle quantum harmonic oscillator: 

2n +1 e = 
2
 

 2n +1  1 
E =  w =  n + w
 2   2  

n = 0,1, 2,3,... 

Figure 14.2 depicts the wave function of the one-particle quantum harmonic 
oscillator for n = 0,1 and 2. One can see that n also corresponds to the number of 
nodes of the wave function. 

Fig. 14.2:  One-particle quantum harmonic oscillator for n = 0,1 and 2. 

3.  Numerical analysis and the Fortran code for the one-particle 
quantum harmonic oscillator 

In the problem of the quantum harmonic oscillator of one particle of mass m, the 
single particle is described by a wave function or eigenfunction in x axis, y(x). It 

 



 

oscillator is: 

d 2y 
− + u 2 y ( )  x = ey ( )x

du2 

mw 2 mw 2  d 2 d 2 

u = x , u = x , 2 = 
  mw dx du2 

2E e = 
w 

The quantum harmonic oscillator has two natural scales, i.e., tw
physical quantities: length (position) and energy. In the dimensi
harmonic oscillator, the Hamiltonian and the energy solutions are giv
are the equations for the potential energy and energy used in the cod

1V =  0.5x2, En = n + – 
2 

Having the dimensionless quantum harmonic oscillator, we
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is moving in a one-dimensional potential along the x direction, so-called V(x), as 
a quadratic function in the range of two limits (or the walls of the system): xmin  
and xmax. The corresponding time-independent Schrödinger equation and boundary 
conditions are: 

d 2y ( )  x 
2 + K x  2 ( )  y ( )  x = 0,  y (x min ) =y (x max ) = 0

dx 
2 2m K ( )  x = [E −V x  ( )]

h2 

 d 2y ( )x 1 
− + m x  w y2 2 ( )  x  = E y ( )x

2m dx 2 2 

Where E is the energy eigenvalues, h  is the Planck’s constant, ℏ = h/2p, w the angular 

frequency and n is the frequency. 

Let us firstly undimensionalize the above equation.
 

The dimensional solutions, along with the dimensional potential energy, are 
given below: 

 1   1 E n =  n + w =  n +  hn
 2   2  

1V = kx 2 , k = mw 2

2 
Where k is the force constant and n is the frequency. 

Do not confuse the h in the equation above, the Planck’s constant, with the h 
in the Numerov’s algorithm. Since the energy has ℏw dimension, then e = E/ℏw  
is the dimensionless energy and since mw/ℏ has the dimension of [length]–2, then  
u = (mw/ℏ)1/2  is the dimensionless length. Then, the dimensionless quantum harmonic 

o dimensionless 
onless quantum 
en below. These 
e. 

 need to search 
for numerical non-zero solutions (non-zero En) for this problem. In the code, 
the energy En is adjusted according to the midpoint value of the potential energy 
range (Vupper and Vlower) where the value of the desired En is located. The wave 
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function is integrated point by point according to the grid (number of points for the 
integration along the axis x). After the integration finishes in the whole range of x, if 
the number of nodes, n, (number of changes of sign of the function) is larger than the 
predetermined number of nodes (given by the user), E is adjusted to a new value of 
a lower half interval of energy. If the number of changes of the sign of the function 
is smaller than the predetermined n, then E is adjusted to the upper half interval of 
energy. This process cycles until it reaches the threshold where the convergence is 
reached. 

The code takes into account the symmetry of the potential energy for constructing 
the wave function. 

As a quantum system, the wave function has classical allowed regions and 
classical forbidden regions (where there is a tunneling effect). The classical allowed 
regions are within the limits of the wall, i.e., the lower (xcl1) and upper (xcl2) classical 
limits are: 
x > x , x < x cl 1 min cl 2 max 

classical region 
x ≤ x ≤ xcl 1 classical cl 2  

There are two classical forbidden regions which are two extreme regions in the 
system. Each of either forbidden region is located between the classical limit (xcl) 
and the limit of the wall (xmin or xmas). 

x ≤ x < x min forbidden 1 cl 1 
forbidden region 

x < x ≤ xcl 2 forbbiden 2 max  

As already mentioned in a previous section, when k > 0, the function has classical 
oscillations and when K2 < 0 it decays or grows exponentially. Then, when E > V(x), 
the eigenfunction y(x) has oscillatory behavior in the classically allowed regions. 
When E < V(x), the wave function behaves exponentially in the classical forbidden 
regions of the system. Since V(x) ≤ 0 (and it is multiplied by –1), if the eigenvalue E 
< 0 then K2 < 0 and the wave function has a exponential behavior towards the walls 
of the system. If E > 0, then K2 > 0 and the wave function has a classical oscillatory 
behavior. 

Important to add that at both x = xcl1 and x = xcl2, the wave function has a 
maximum where each derivative at each point is zero. 

dy ( )x dy ( )x 
= = 0

dx x dx xcl1 cl 2 

There are some numerical methods to solve this equation. One of them is 
the shooting method where we search for trial eigenvalues. Let us begin with one 
negative trial eigenvalue (of a exponential behavior) in which the integration in the 
forbidden region (let be from xcl1 to xmin) gives: 
xmin 

QHDE dx =∫ ( ) y < 

xcl1 

Where QHDE is the quantum harmonic differential equation. 
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If we increase the limit of this integration before xcl1 towards the upper limit 
xmax, it would yield an inaccurate result (an exponentially growing solution). Then, 
at each eigenvalue, it is recommended to generate a second wave function: 

x

∫
cl1 

( QHDE ) dx =y > 

xmax 

Both wave functions, y< and y>, satisfy a homogeneous equation (homogeneous 
because S(x) = 0). Henceforth, one of the classical limits, xcl1, will be the matching 
point, xm so that 
x m = xcl 1 

y < ( )  xm =y > ( )xm 

Then, a normalization is done to that y<(xm) = y>(xm). 
By using the finite difference approximation method (Chapter two) from the 

derivatives below: 

dy < dy
= > = 0

dx x m 
dx xm 

dy
 < dy

− > = 0 
dx x m 

dx xm 

We have: 

y < ( x m − h) −y < (xm ) y (x 
− > m − h) −y > (xm )

= 0
h h 

y < (x m − h) −y > (x m − h) = 0

Then, one has to find the root of the function f. The secant or bisection methods 
can be used. In the code below, it is used the bisection method whose algorithm 
is very similar to that from BISECTION3 code (see Chapter two). To find f  for a 
given energy, the Numerov method (Chapter two) is used to integrate leftward and 
rightward and the solutions are matched at leftmost turning point, xm = xcl1. The 
search stops when f goes near zero. 

Since h is a real number and each ith wave function is located at ith integral step, 
it is not possible to use in the code the following data: y < (x m − h)∴y > (x m − h)

In the second iteration process, the two parts of the wave function will have a 
discontinuity at the matching point. For good solution, this discontinuity must be 
zero. 

In the code below, it calculated the discontinuity between y<(xm) and y>(xm), 
given by the variable DJUMP. When DJUMP*Y(xm) is zero, the iteration process 
stops. 

 y x  ( cl 1 +1) + y x(  − −1) (14  −12  f (x )) y x( )
djump = 

cl 1 n cl 1 cl 1

h 

The boundary conditions are xmin = 0 (y = 0) and xmax = 10, where y is the 
wave function. The grid (the number of points in the x axis) is set to 300. Since  
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h = xmax/grid, then h = 10/300. Each point in x direction is given by: x(i) = i*h, where 
i = 0 to 300. Each corresponding potential (of a parabolic potential well). 

The objective of this code is to obtain the y(i), that is, the wave function at 
the point i corresponding to x(i) using the Numerov equation for the wave function 
(Chapter two). 

The code makes the function fn of the Numerov’s algorithm explicit. The first 
equation below is the Numerov equation for the wave function. The second equation 
is the term fn of the first equation. Be aware to not confuse f and fn. The explicit 
function fn is also highlighted in the code’s commentaries. 

(12 −10 f )y − f yn n n−1 n−1=y n+1 fn+1 

h2 2m2 2 ( )  E − ( ))  fn = 1+ Kn , K x = 2 ( V x
12  

The sign of fn(i) and Y(i) plays a major role in the adjustment of the wave 
function since the number of crossings (i.e., how many times the sign of the wave 
function changes) has to be equal to the number of nodes. When this is not the case, 
the energy E is adjusted in order to yield a different value of fn(i) and Y(i). This 
iteration process continues until the equality ncross = n is found. This is the first 
iteration process in the recursive cycle of the code. When ncross = n, the recursive 
cycle goes to the second iteration process to find DJUMP*Y(xm) = 0 (see above). 
When the second equality is met, the recursive cycle stops. 

Important to add that the energy E is dependent on the number of nodes, n, while 
the potential energy V is dependent only on the x variable. We show this on the results 
of the code printing the values of V and E. We see that there is an initial value of E, 
which is 25 and it decays to the final value according to the iteration process (using 
ITER variable). The dimensionless analytical solutions of the energy levels, En, for 
the quantum harmonic oscillator are 0.5 (for n = 0), 1.5 (for n = 1), 2.5 (for n = 2), 
3.5 (for n = 3), 4.5 (for n = 4), 5.5 (for n = 5), and so on. 

At two distinguished steps of the code, there is a section to determine whether 
the number of nodes, n, is even or odd. This is because an even number of the node 
corresponds to an even wave function (sum of phases is even) while an odd number 
of the node corresponds to an odd wave function (sum of phases is odd). There is a 
routine for determining whether a number is even or odd in Fortran and it is shown 
in Chapter One (name of the program: EVEN-ODD). This is the same routine used 
here. 

The recursive process of Numerov’s algorithm goes from ‘xmin’ to the match 
point, xm, and backwards from ‘xmax’ to this match point. In another words, two 
integrations are performed: the forward recursion (from xmin to xm) and the backward 
recursion (from xmax to xm). 

The forward integration is performed until the grid point as close as possible to 
the match point, yielding the wave function, y<. Then, the backward integration goes 
to the grid point as close as possible to the match point yielding the wave function, 
y>. In general, the two parts of the wave function y< andy> have different values 
of the match point. Then, the wave function y<is rescaled in a iteration process 
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so that both functions give the same value at match point. All the wave function 
points, Y(xi), from the icl point (the classical turning point) to the last point (xgrid) 
are rescaled. 

y (icl )y(icl :) = y(icl :) old 
y ( iclnew )

Henceforth, the wave function is normalized (See the NORMALIZATION code). 
When the code is run, it requires the number of nodes, n (n = 0, 1, 2,3…) and the 

trial energy (which should be given zero value). The output file contain two columns 
x, y(x) – actually the wave function and y(x)^2. The plot can is x vs y(x). One can 
use the multiplatform, free GNUPLOT (Willians et al. 2018) to plot the results from 
the code. 

The results of this code (the wave function for n = 0, 1 and 2) are depicted in 
Fig. 15.1. 

The algorithm of the code can be summed up as: integration process to find 
values of wave function y at each point of the grid from two different regions giving 
the inward and outward integration until the point that divides both regions called 
matching point (icl). The guess to start integration is the value of y at both extremes 
(shooting method) is given according to the particularities of the wave function. The 
energy E is adjusted in the recursive process which concomitantly produces the icl.  
This is the same algorithm used in the code of the Chapter seventeen. 

!--------------------------------------------------------------­
!Program name: ONE_PART_QHO 
!Original code: Giannozzi,P., Ercolessi, F. and Gironcoli, S. 
!Modified by Caio Lima Firme 
!One particle quantum harmonic oscillator 
!PARABOLIC POTENTIAL WELL 
!Objective: to plot the wave function for each node 
!--------------------------------------------------------------­
!The dimensionless physical quantities: 
!Potential energy: V(x)=0.5X^2  
! Energy: E=1/2+n 
!--------------------------------------------------------------­
! Use of Numerov method to find the wave function 
! Function fn from Numerov equation is 
! Fn = 1 + K2*h^2/12 , where K2=2m/((H/2pi)^2)*(E-V)
! H=Planck constant 
!---------------------------------------------------------------

integer :: grid, i, icl
 integer :: n, hn, ncross, j, iter 

double precision :: xmax, h, fh12, norm, djump, fac 
double precision :: Vupper, Vlower, e, k

 double precision :: x(0:300), y(0:300), V(0:300), fn(0:300)
 character (len=20) :: fileout
 character (len=1) :: A

!------------------------------------------------------
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! Boundary conditions:
 y(0) = 0.0d0

 x(0) = 0.0d0

 xmax=10

 grid=300
 

! The number 300 refers to the grid everywhere in the code
 h = xmax/grid 

! Make explicit one term of the fn function from the Numerov method: fh12 
fh12=h*h/12.0d0
 !------------------------------------------------------
!Input data file 
print *, ‘output file name is (include .dat at the end): ‘

 read *, fileout 
!-------------------------------------------------------------
! Record in the computer memory each value of x(i) and V(i)
 

do i = 0, grid

 x(i) = i * h
 
 V(i) = 0.5d0 * x(i)*x(i)

 write (*,*) i, ‘X(i)=’, x(i),’V(i)=’, V(i)


 end do 
!---------------------------------------------------------------
! Beginning of searching process 
10 search: do 

!Input the number of nodes, n 
20 print *, ‘give the number of nodes, n (n=0,1,2,3,): ‘

 read *, n

 if (n < 0) then

 go to 20

 end if
 

!---------------------------------------------------------------
! set initial lower and upper bounds of the potential V(x)

 ! Set trial energy E
 Vupper=maxval (V(0:300))

 Vlower=minval (V(0:300))

 e = 0.5d0 * (Vlower + Vupper)

 iter = 100
 

Write (*,*) “Vupper=”, Vupper, “e(initial)=”, e 
!------------------------------------------------------------------
 ! BEGINNING OF  THE RECURSIVE PROCESS (STEP=j)

 iterate: do j = 1, iter 
! set up the fn-function used by the Numerov method 
! fn=1+[2(V-E)]h^2/12 without m (mass) and H/2pi (Planck constant) 
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! determine the position of its last crossing, i.e. change of sign
 ! fn < 0 means classically allowed region
 ! fn > 0 means classically forbidden region
 

fn(0)=fh12*(2.0d0*(V(0)-e))
 
icl=-1
 
do i=1,grid


 fn(i)=fh12*2.0d0*(V(i)-e)
 
if ( fn(i) == 0.0d0) fn(i)=1.d-15
 

! store the index ‘icl’ where the last change of sign has been found
 if ( fn(i) /= sign(fn(i),fn(i-1)) ) icl=i

 end do
 ! fn as required by the Numerov method

 fn = 1.0d0 - fn 
! determination of the wave-function in the first two points

 !-------------------------------------------------------------------­
! Routine to determine whether n (number of nodes) is even or odd

 ! Check the program EVEN-ODD
 hn = n/2

 ! if n is even, the wave function is even

 ! if n is odd, the wave function is odd

 if (2*hn == n) then 

! even number of n: wavefunction is even
 y(0) = 1.0d0

 ! assume f(-1) = f(1)
 y(1) = 0.5d0*(12.0d0-10.0d0*fn(0))*y(0)/fn(1)

 else
 ! odd number of n: wavefunction is odd

 y(0) = 0.0d0

 y(1) = h


 end if

 !-------------------------------------------------

 ! outward integration and count number of crossings
 ncross=0

 do i =1,icl-1


 y(i+1)=((12.0d0-10.0d0*fn(i))*y(i)-fn(i-1)*y(i-1))/fn(i+1)
 if ( y(i) /= sign(y(i),y(i+1)) ) ncross=ncross+1
 end do
 fac = y(icl) 

!-------------------------------------------------
! Routine to determine whether n (number of nodes) is even or odd

 ! Check the program EVEN-ODD
 if (2*hn == n) then 

! even number of n: no node in x=0
 ncross = 2*ncross 
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 else 
! odd number of n: node in x=0

 ncross = 2*ncross+1

 end if


 !--------------------------------------------
 ! check number of crossings
 ! FIRST ITERATION PROCESS 

!THE NUMBER OF CROSSINGS HAS TO BE EQUAL TO THE NUMBER 
OF NODES 
!Bisection method (see BISECTION3 code in chapter two)

 if ( iter > 1 ) then

 if (ncross /= n) then
 

! Incorrect number of crossings: adjust energy 
if ( j == 1) & print ‘(“step Energy n Discontinuity Vupper Vlower icl”)’ 

write (*,5) j, e, ncross, Vupper, Vlower, icl 
5 format (i5,f25.15,i5,f35.15,f35.15,i40)

 if (ncross > n) then 
! Too many crossings: current energy is too high,


 ! lower the upper bound
 
Vupper = e


 else

 ! Too few crossings: current energy is too low,
 
! raise the lower bound
 

Vlower = e

 end if


 ! New trial value:
 e = 0.5d0 * (Vupper+Vlower) 

! go to beginning of do loop, don’t perform inward integration
 cycle


 end if
 
end if
 

!The equality ncross = n was reached
 
!END OF THE FIRST ITERATION PROCESS
 

!--------------------------------------------------------------------------
 ! Correct number of crossings: proceed to inward integration
 ! Determination of the wave-function in the last two points

 ! assuming y(grid+1) = 0
 y(grid) = h


 y(grid-1) = (12.0d0-10.0d0*fn(grid))*y(grid)/fn(grid-1)
 
do i = grid-1,icl+1,-1


 y(i-1)=((12.0d0-10.0d0*fn(i))*y(i)-fn(i+1)*y(i+1))/fn(i-1)
 
end do
 

! -------------------------------------------------------------------------
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 ! rescale function to match at the classical turning point (icl)
 fac = fac/y(icl)
 
Write (*,*) “fac=”, fac

 y(icl:) = y(icl:)*fac
 

!-------------------------------------------------------------------------
!Normalization of the wave function

 !DOT_PRODUCT : scalar product of vectors
 !See the code: NORMALIZATION
 norm = dot_product (y, y)

 y = y / sqrt(norm)
 

!----------------------------------------------------------------------
! SECOND ITERATION PROCESS 
! Bisection method (See BISECTION3 code in chapter one)

 if ( iter > 1 ) then 
! calculate the discontinuity in the first derivative


 ! y’(i;RIGHT) - y’(i;LEFT)

 djump = ( y(icl+1) + y(icl-1) - (14.0d0-12.0d0*fn(icl))*y(icl) ) / h

 write (*,30) j, e, n, djump, Vupper, Vlower,icl
 30 format (i5,f25.15,i5,f14.8,f22.15,f34.15,i40)

 if (djump*y(icl) > 0.0d0) then 
! Energy is too high --> choose lower energy range 

Vupper = e

 else
 

! Energy is too low --> choose upper energy range 
Vlower = e


 end if

  e = 0.5d0 * (Vupper+Vlower)
 

! -------------------- convergence test ----------------------------­
  if ( Vupper-Vlower < 1.d-10) exit iterate

 end if 
! END OF THE SECOND ITERATION PROCESS
 end do iterate 
! END OF THE RECURSIVE PROCESS

 !-------------Convergence achieved-----------------------
print *, ‘Do you want to do another calc (Y/N)?’

 read *, A
 Select case (A)

 Case (‘Y’,’y’)

 go to 10


 case default

 continue


 end select
 
!------------------------------------------------------------------
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!Printing results x(i) and y(i) in the ‘fileout’ 
! x<0 region: 
open(7,file=fileout,status=’replace’) 
do i=grid,1,-1

 write (7,’(f7.3,3e16.8,f12.6)’) -x(i), ((-1)**n)*y(i)

 end do

 ! x>0 region:

 do i=0,grid
 

write (7,’(f7.3,3e16.8,f12.6)’) x(i), y(i) 
enddo

 write (7,’(/)’)
 close(7)
 stop 

!--------------------------------------------------------------------------
end do search 

stop 
end 

Exercises 

 (1)  Give the approximated Hamiltonian and the wave function of the two-particle 
harmonic oscillator of reduced mass, m, within the parabolic potential energy, 
that is, the system vibrating in the bound region. The initial value of x (at the 
equilibrium) is the equilibrium interatomic distance of the molecule and it 
vibrates symmetrically to left and right. 

 (2)  Change the code above in order to describe the vibration of the diatomic 
molecule beyond the limits of the parabolic potential energy, i.e., assuming the 
Morse potential (Morse 1929, Taseli 1998). 

2 

E 1 (hn )
n = hn ( + −2 )  

n  (n + 1
2 ) 2 

4De 

V x  ( )  = D e −2ax − 2e −ax
e +1 ,   x = r −  re 

a = ke 2De 

Where De  is the dissociation energy, re  is the equilibrium interatomic distance and r is 
the distance between two atoms. The parameter a controls the width of the potential 
well. This potential breaks the inversion symmetry of the potential associated to one-
particle quantum harmonic oscillator. 
 (3)  By knowing that probability density is: 

grid 

ρ(x ) = ∑[y (x)]2  
n=1 

Include in the code of the harmonic oscillator the “DO loop” to calculate and 
plot the probability density of the wave function. 
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Particle in a Box 15 
1. Particle in unidimensional box 
The particle in a one-dimensional box is the system where one particle is allowed 
to move freely along the x direction from x > 0 to x < l (l is abbreviation for length) 
where the potential energy, V(x), is zero in order to ensure that no external force acts 
on this particle in the box. In addition, the potential energy is infinite in the walls 
(x = 0 and x = l) and beyond the limits of the walls (x < 0 and x > l) to ensure that the 
particle cannot leave the box. 
The Schrödinger equation for this system is: 

 


2 d 2 
( )  ψ ( )x = ψ x− +V x  E  ( ) 2 2m dx  

The boundary conditions are: 

= 0, lower limit 
x  
= l , upper limit 

x = 0
( )  = 0 ψ x 

x l  =
 

= ∞⇒  x 0 x l 
≤ ∴ ≥  
( )  V x  

= 0 ⇒ 0 < <x l 
Then, the Schrödinger equation becomes: 



2 d 2 

− 2 ψ ( )  = ψ ( )x  E x
2m dx
 

d 2 2mE
 
2 ψ ( )  = 2 ψ ( )x x

dx  

The particle in the box has similar equation for the one-particle quantum 
harmonic oscillator except for the potential energy (see Chapter fourteen). 



( )2sin 1 1 cos 2 2x x= − −
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When setting: 

2 2mEω = 


2 

We have the equation: 
2ψ ( )  2d x 

2 +ω ψ ( )  = 0x
dx 

or 
y ''+ω 2 = 0 

Then, the general solution for this elliptic second-order differential equation (as 
discussed in Chapter four) is: 

ψ ( ) x = d1 cos ωx + d2 sin ωx 

By applying the periodic boundary conditions at x = 0, we have: 
x = 0, ψ (0) = 0 
ψ (0) = d cos 0 + d sin 0 0= ∴  d = 01 2 1 

x = l , ψ ( )l = 0 
i 2 sin ω ⋅ =ψ ( ) = d ( ) l 0 

The function sine(x) is only zero at multiples of π, i.e., nπ (n = 0, ±1, ±2, ±3,…). 
Then: 

n ⋅π n π ω l , ω = , n =  ± ± ±  0, 1, 2, 3,...  ⋅ = ⋅  
l 

and 

 n ⋅π  x nψ n ( )  x = d2 sin    , =  ± ± ±  0, 1, 2, 3,...  
 l  

The coefficient d2 is the normalization constant. We need to find this coefficient 
to obtain the normalized function. 

The total probability to find the wave function between 0 and l in x coordinate is 
a unit (i.e., it has 100% of likelihood). Then: 
l 

2 
l  2  n xπ ( ) =1, d sin dx =1,ψ x dx ∫ ∫  2   

0 0   l  

2 
l  2  n xπ d2 sin  dx =1∫  
0   l  

Remember the trigonometric identity: 
1sin2 x = 2 (1− cos 2x) 
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By replacing the above equation in the previous integral, we have: 

1 l 
2   2 n x  π d2 ∫ 1− cos   dx =1

2 0   l  
u = 2 ,  x du = 2dx 

1 l 
2   n uπ d 2 ∫ 1− cos   du =1

4 0   l  

1
x l=

 
 

 n uπ d u2 
2 − sin   = 1

4   l  x=0
 

1
l


2   2 n x  π d − =4 2  2x sin   1
  l  0 

1
l

2   n xπ d x  2 − sin =   1
2   l  0 

1 d 22 (l − sin nπ ) − −( 0 sin  0 ) = 1
2 
l 2 2d =1∴d = 
2 2 2 l 

Then, the normalized wave function is: 

2  n ⋅π ψ n (x )  = sin   x  , n = 0, 1 ± ±, 2, 3± ,. ..  
l  l  

This wave function is similar to that from one-particle harmonic oscillator wave 
function (Chapter fourteen). 
Remember that: 

2 2mE nπω = 2 ,ω = , n = 0,  ± ±1, 2, ... 
 l 

Then, we have: 

n 2  π 2 2
 hE = ,  = 

2ml 2 2π 
n 2  π 2 2  h  n h2 2

E = = 2 2  2 , n = 0,  ± ±1, 2, ... 
2 4  m π l 8ml 

2.  Particle in bidimensional box 
The Fig. 15.1 shows the representation of a particle of mass m in a bidimensional box 
in the similar boundary conditions of the unidimensional box. 



 

 Fig. 15.1: Representation of the particle in bidimensional box. 
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The classical kinetic and potential energies, K and V, respectively, of this system are: 
1 2 1K = mv + mv2

2 x 2
 y

1 2 1 p = mv ,Then : K = px + p2


2m 2m y

1K = ( p 2 + p2

2m x
 y )
0 < <x a 


V  ( ,  x y  )  = 0 
0 < <y b  

Then, the quantum Hamiltonian becomes: 

 2  ∂ 2 ∂2 
 H = −  2 + 2 2m ∂x ∂y  

Since the Hamiltonian is the sum of two terms with independent, separate 
variables (x, y), we can use the method of the separation of the variables (see Chapter 
four) in order to provide a straightforward solution. Then, the total wave function is 
a product of two wave functions: 

ψ ( ,  x y  )  = X (x  )  ⋅Y (y  )  
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And the Hamiltonian can be split into two Hamiltonians: 
 2 d 2 

 2 d 2

H X = − , H  2 Y = −2m dx 2m dy 2

Likewise, there are two separate Schrödinger equations: 

 2 d 2 X  ( )x
−  2 = E X  x ( )x

2m dx
 



2 d Y  2 (y  ) 
  
−  2 = E Y  y
 (y)  
  

2m dy

The total energy is the sum of the two components: 

E = Ex + Ey 

Where: 

n h2 2

E x
x = En = 

x 8ma 2

n h2 2

E = E n = y 
y y 8mb 2

The two components of the wave function are: 

2 n xxπX (x ) = sin 
a a 
2 n yπ 

Y y  ( ) = sin y

b b 
For a symmetric box (a = b), we have: 

h2

E 2 
n + En =  2 

x y 8ma 2 (nx + ny )  

Let us evaluate the energy of the symmetric box for some values of nx and ny: 

h2 

nx = 1∴ny = 1, E = 
4	ma2
 

5h2
 

n x = 1∴n y = 2,  E = 
8ma	 
 2

5h2
 

nx = 2∴ny = 1, E = 
8ma 2

We can see that the wave function X1(x) Y2(y) and X2(x) Y1(y) have the 
same energy, that is, these wave functions are degenerate. This is the first case of 
degeneracy so far in this book. Degeneracy means two or more eigenfunctions or 
eigenvectors with the same eigenvalue. 
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By supposing that the symmetric box has length a = 10. Let us find the wave 
function for some values of nx and ny: 

2 n x  π
ψ (x y, ) = sin x π n y

sin y , a = 10 
a a a
 

1 π x π y
nx = 1∴ ny = 1, ψ (x y, ) = sin sin 
5 10 10 
1 π x π ynx = 1∴ ny = 2, ψ (x y, ) = sin sin 
5 10 5 
1 π x π ynx = 2∴ ny = 1, ψ (x y, ) = sin sin 
5 5 10 
1 π x π yn x = 2∴ n y = 2, ψ (x y, ) = sin sin 
5 5 5 

The Fig. 15.2 shows the plots of the above wave functions. 

Fig. 15.2:  Plots of the wave functions of the particle in bidimensional, symmetrical box: (A) ψ11;  
(B) ψ12; and (C) ψ22. 

Exercises 

 (1)  Plot the wave functions ψ11; ψ12; and ψ22. for a rectangular box (a = 5 and b = 10). 
 (2)  Plot the probability density of the wave functions ψ11; ψ12; and ψ22. for a 

symmetrical box. 
Tip: Use the free program GNUPLOT (Williams 2018). 
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Particle in a Circular 

Motion and Angular 
 16Momentum 

1. Classic circular motion 
The circular motion is a movement of a body in a circumference or rotation in a 
circular path. Although we cannot infer that the electrons describe circular motion 
around nuclei, the mechanics of circular motion is necessary for the rotation of a 
molecule (rigid rotor) and to obtain the solution for the hydrogen atom. 

Let us consider a body moving at constant velocity around a circle of radius r in 
the plane (x,y). Let us convert this problem from Cartesian coordinate system into 
polar coordinate system. See Fig. 16.1. 

x r  ⋅cos j , y = r ⋅sin j=

The mean angular velocity, ω–, is given by the formula: 
∆jω = 
∆t
 

: 0 j ω t
if t = 0,  = ⋅ 

And the angular velocity, ω, is then defined by: 
djω = 
dt 

On the other hand, the linear velocity, v, has two components: vx and vy 
     
v vx v y= + 

⋅ j d r  ⋅cos ( ) ⋅ t d r  cos  ω dx ( )  v = = = = rω sin ω ⋅ tx − ⋅  ( ) 
dt dt dt 
dy ( ⋅ )   d r  sin j d r  ⋅sin ( ) ω ⋅ t  

v = = = = rω ⋅cos ω ⋅ ty ( ) 
dt dt dt 



 

The modulus of the linear velocity is the dot (scalar) product of radius r and 
angular velocity. 
 2  2  2 
v = vx + vy 

 2 
v = [−rω sin( ω ⋅ t)]2 2 

  +[rω cos( ω ⋅ t)]
v r  = ω sin  2 (  ω ⋅ t) + cos  2 (  ω ⋅ t) 

sin  2 (  ω ⋅ t) + cos  2 (  ω ⋅ t)  =1 
v r  = ⋅ω

2.  Bidimensional Laplace operator in polar coordinate system 
The bidimensional Laplace operator in polar coordinate system is important to solve 
Schrödinger equation in next section. Then, we change the function in Cartesian 
coordinate into polar coordinate. 

f  (x, y  ) → g( ,  r  φ)  
x r  = ⋅cos φ   , y = r ⋅sin φ

 r 2 = x 2 + y 2 ,  φ = arctan ( y x) 
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Fig. 16.1: Schematic representation of components of a circular motion in polar coordinate system. 
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Then, we have to transform the bidimensional Laplace operator: 

∂2 f ( x, y ) ∂2 f (x, y)
+

∂x2 ∂y 2 

into r and j independent variables.
 
Let us write two partial derivatives of r with respect to x and y:
 

∂r  ∂ (x  2 + y − /2 ) 1 2 x 
= = 

∂x  ∂x  (x   y2 ) / 22 +
1

∂r  r ⋅ cos j 
= = cos j

∂x  [( r  2 ⋅ cos 2j ) + (r ⋅sin 1/ 22 2j)] 
∂r −1/ 2
 ∂ (x  2 + y2 )  y 
= = 

∂y  ∂y  (x  1/ 22 + y2 ) 
∂r  r ⋅ sin j 

= [( 1/ 2 =  
 sin j

∂x  r 2 ⋅ cos 2j ) + (r 2 ⋅sin2j)] 
By knowing the derivative of arctan x as: 

d (arctan x) 1 
= 

dx 1+ x2 

Then, the two partial derivatives of φ with respect to x and y are: 

r ⋅sinj r ⋅sinj 
− −
 

∂j − (y x2 ) r 2 ⋅ cos 2 j r 2 ⋅ cos 2j= = =
∂x  1 + ( y x)2  r 2 ⋅ sin 2j r 2 ⋅ cos 2j + r 2 ⋅sin2j1+
 

r 2 ⋅cos 2 j r 2 ⋅ cos 2j
 
∂j r ⋅sinj sinj


= − = − 
∂x r 2 r 

1 
∂j 1 x r ⋅ cosj r 2 ⋅ cos 2 j 

= = = 
∂y 
 1+ ( y x)2 r 2 ⋅ cos 2j + r 2 ⋅sin2j (r  ⋅ cos j)r 2

r 2 ⋅cos2 j
 
∂j cosj


= 
∂y r 

Now, let us use the chain rule to the first partial derivative of the function g with 
respect to variable x and y: 

∂g  ( r,j ) ∂j ∂g  (r,j) ∂r ∂g  (r,j )  ∂j ∂ ∂r ∂  
= + =  +   ( ,j g r )

∂x  ∂x ∂j  ∂x  ∂r   ∂x ∂j  ∂x  ∂r  
∂g  ( r,j )  sinj ∂ ∂  

= −  + cosj g(r,j)
∂x   r ∂j ∂r  
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∂g  ( r,j ) ∂j ∂g  (r,j) ∂r ∂g  (r,j )  ∂j ∂ ∂r ∂  
= + =  +    g(r,j)

∂y  ∂y ∂j  ∂y  ∂r   ∂y ∂j  ∂y  ∂r  
∂g  ( r,j )  cosj ∂ ∂ 

=  + j g j sin  (r, )
∂y   r ∂j ∂r  

Then, we can see that: 
∂ sinj ∂ ∂ 
= − + cosj

∂x r ∂j ∂r 
∂ cosj ∂ ∂ 
= + sinj

∂y r ∂j ∂r 

By knowing that: 

∂2  f ( x, y) ∂  ∂f (x, y)  ∂  ∂ =   =   f (x, y)

∂x2 
 ∂x  ∂x  ∂x  ∂x  

Let us do the proper substitution on the previous equation: 

∂ 2 f ( x, y) ∂  ∂ 
2 =   f (x, y)

∂x  ∂x  ∂x  
∂ 2 f ( x, y)  ∂ sinj ∂  ∂ sinj ∂  

= cos − 2 j cosj − g(r,j   )
∂x   ∂r r ∂j  ∂r r ∂j 
 

∂ 2 f ( x , y)  ∂ sinj ∂ 
 ∂g  ( r,j ) sinj ∂g (r,j) 
2 = cosj − cosj
 −   ∂x  
 ∂r r ∂j  ∂r r ∂j  

∂ 2 f ( x , y) ∂ ∂g  ( r,j) ∂ sinj ∂g(r,j)j 2 = cosj cos − cosj
∂x  ∂r ∂r  ∂r r ∂j
 

sinj ∂ sinj ∂g(r,j) sinj ∂
 ∂g  ( r,j)
+ − cos j 

r ∂j r ∂j r ∂j ∂r  

Let us analyze each term of the above equation: 

∂ ∂g  (r,j) 2 

cos j cosj = cos2 ∂ g(r,j) j
∂r  ∂r  ∂r 2 

∂ sinj ∂g(r,j) cosj sinj ∂g(r,j) cosj sinj ∂2 g(r,j)
− cosj = 2 − 

∂r r ∂j r ∂j r ∂r∂j 

sinj ∂ sinj ∂g(r,j) cosj sinj ∂g(r,j) sin2 j ∂2 g(r,j) 
= + 

r ∂j r ∂j r 2 ∂j r 2 ∂j 2 

sin j ∂ ∂g  (r,j) sin2 j ∂ ∂g  (r,j ) sinj cosj ∂2g (r,j)
− cos j = − 

r ∂j  ∂r  r ∂j  ∂r  r ∂j  ∂r 
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Then, we have: 

∂ 2 f ( x, y) ∂ 2 g(r,j) 2cosj sinj ∂g(r,j)
2 = cos2 j  

∂x  ∂r 2 +
r 2 ∂j 

2cosj sinj ∂ 2g(r,j) sin 2 j ∂g(r,j) sin 2j ∂ 2g(r,j)
− + + 

r ∂j∂r r ∂r r 2 ∂j 2 

A similar expression we have for: 

∂ 2 f ( x, y) ∂  ∂  
    f x y

y 2 = ( , )
∂ ∂y  ∂y  

∂2 f (x, y )  ∂ cosj ∂  ∂ cosj ∂  
  

∂y  2 = sinj + sinj + g(r j , )
 ∂r r ∂j  ∂r r ∂j  

∂ 2 f ( x, y) 2 
2 ∂ g(r,j) 2cosj sinj ∂g(r,j)

= j 
 2 − 
∂y 2 sin

∂r r 2 ∂j 

2cosj sinj ∂ 2g(r,j) cos 2 j ∂g(r,j) cos 2j ∂ 2g(r,j)
+ + + 

r ∂j∂r r ∂r r 2 ∂j 2 

When adding both expressions, we have the bidimensional Laplace operator in polar 
coordinate system: 

∂ 2 f ( x, y) ∂2 f (x, y) ∂ 2 g (r,j ) 1 ∂g (r,j) 1 ∂2 g (r,j)
2 + 2 = +  

∂x  ∂y  ∂r  2 +
r ∂r  r 2 ∂j  2

3.  Particle in a ring and quantum angular momentum 
In this system, a particle is restricted to move in a (x, y)-planar ring with zero 
potential energy (no external force acting on it) with constant radius. In order to solve 
this problem, we use the Schrödinger equation in polar coordinate system. The only 
component of the Hamiltonian is the quantum kinetic energy operator, T. Below, it is 
shown the quantum 2-dimensional T in Cartesian coordinate and in polar coordinate. 

 2  ∂ 2 ∂2 
 T = −   +  ,Cartesian coordinate
2m  ∂x 2 ∂y 2 

 

 2  ∂ 2 1 ∂ 1 ∂2 
T  = −  +  2 + 2 2  ,polar coordinate

2m  ∂r r ∂r r ∂φ  

Since the particle is restricted to a planar circular motion with constant radius, r, 
the derivatives of the wave function with respect to r are zero. 
r = const 
∂ψ ∂2ψ 

= ∃ , = 
∂r ∂r 2 ∃ 

then : 


2 ∂2 

T = − 
2mr 2 ∂φ 2
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The Schrödinger equation becomes: 


2 ∂2ψ
− 2 = Eψ

2mr ∂j 2 

I = mr 2 



2 ∂2ψ
− = Eψ

2I ∂j 2 

Let us rearrange the above equation: 

∂2ψ 2EI 
= − ψ 

∂j 2 
 2 

∂2ψ 2EI 
+ 


 
ψ = 0
 

∂j 2 


2

2 2EI ω = 
 2

∂2ψ 2 
2 +ω ψ = 0 

∂j 

y ''+ω 2 = 0 
This equation is similar to that from the particle in one-dimensional box (Chapter 

fifteen) and the one-particle harmonic oscillator (Chapter fourteen), whose general 
solution for this elliptic second-order differential equation (as discussed in chapter 
four) is: 

y = c e  i x  ω + c e  −i xω 
1 2 

or 
y = d1 cos ωx d+ 2 sin ωx 

Do not confuse ω2 in the previous equations with square angular velocity. It is 
just a conventional symbol used in chapter four. Let us change now ω2 into m2 to 
avoid further confusions. 

∂2ψ 2EI 
2 = − 2 ψ 

∂j  

2 2EI m = 


2 

∂2ψ 
= −m 2ψ 

∂j 2 

Actually, x becomes φ in the particle in a ring. Then, the general solution becomes: 

ψ j( )  = c e  imj + c e  −imj
1 2 

or 
ψ j( )  = d1 cos mj + d2 sin mj
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The only difference with respect to the particle in a one-dimensional box lies 
in the independent angular variable φ that repeats itself at each 2p radian. Then, the 
boundary condition is: 

ψ (j + 2p ) =ψ (j) 

By applying the periodic boundary conditions we have: 

( ) = N cos ψ j  mj 

( ) = N sin ψ j  mj 

( )  = Neimjψ j  

This requires that: 
iω j+2imj ( p ) 2p ⋅ime = e ⇒ e =1 

Where N is the normalization constant. This is only true when: 

m = 0,±1,±2,±3,... 

The proof for the previous statement comes from Euler’s identity. 
xi = cos( ) + i sin( ) e x x 

m = ∴ =  1 x 2p 
2p i cos(2 ) + i sin(2 p ) = +  0e = p 1 
2p ie =1 
= 2 x 4m ∴ = p 

4p i cos(2(2 )) + i sin(2(2 p )) = +  0e = p 1 
4p ie =1 

m = ∴ =  3 x 6p 
6p i cos(3(2 )) + i sin(3(2 p )) = +  0e = p 1 
6p ie =1 

Let us substitute this wave function in the Schrödinger equation: 
2 2
 d imj− (Ne ) = Eψ
2I d j 2 

2
 d imj− (imNe ) = Eψ
2I dj 

2 2 imj−


2 

(i m Ne ) = Eψ
2I 
2 2m  imjNe = Eψ
2I 

Then, the energy of this system is: 
2 2m E = , m = 0, 1, 2,... ± ±
2I 



)(j

( )φF
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By knowing the relation between the (orbital) angular momentum and the kinetic 
energy (see Chapter eight) and the quantum kinetic energy: 

L2 

T = , classic 
2I 

2 2m T = , quantum 
2I 

We have the equation for the (orbital) angular momentum: 
2  2 2L = m 
 

L = m , m = 0, 1, 2,...
 ± ±  

The Schrödinger equation of the particle in the ring is part of the solution to the 
hydrogen atom. The wave function of the hydrogen atom can be separated into three 
wave functions: 

ψ (r,q ,j)= R(r)Θ(q )FΦ(φ) 

Where one of these wave functions, the F(j) wave function, is associated with 
the projection of the angular momentum in the z axis, Lz, and it has the following 
differential equation (as a part of the three decomposed differential equations of the 
hydrogen atom): 

d 2F 2 
2 − F  

dj
= m
 

where :
 
F = sin( mj) or cos( mj) or exp( ±im j)
 
This is a similar differential equation and wave function for the particle in the ring: 
∂2ψ 2 ∂2ψ 2+m ψ = 0,  = −m ψ 
∂φ ∂φ 

where : 
ψ ≡ F  

The wave function of the hydrogen atom can also be written as: 

(r,q φ  ) = R ( )  l 
mlψ , n l, r Y  

and Y ml q φ  ( )  :  l = Y ( ) , = Θ q Φ(ϕ) 

where Y(q,j) or Y(q,φ) is the spherical harmonics function, l is the azimuthal quantum 
number (or orbital quantum number) and ml is the magnetic quantum number. 

In the hydrogen atom, the F(j) wave function is associated with the 
Schrödinger’s wave equation of the particle in the ring. Then, the quantum number 
m (from the particle in the ring) becomes ml, L becomes Lz and their Schrödinger 
solution becomes: 

l lL Y m = m Y m 
z l   l 

where : − ≤ mll ≤ l 
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As a consequence, the z-component of the angular momentum is quantized, i.e., 
it only assumes a discrete set of values. 

4.  Angular momentum in spherical polar coordinate system 
The Fig. 16.2 shows the position of an arbitrary point with the following spherical 
polar coordinates: r, q, j, where j is the azimuthal angle (in horizontal plane) and q  
is the zenith angle or polar angle (in vertical plane). The relation between spherical 
polar coordinates and Cartesian coordinates is given below: 

x r  = sin q cos j 

y = r sin q sin j 

z r= cos q 

r = x 2 + y 2 + z2

x 2 + y 2 

tan q = 
z 

ytan j = 
x 

The (orbital) angular momentum operator in spherical polar coordinates can be 
obtained in seven steps. 

Fig. 16.2: Schematic representation of spherical polar coordinates. 



( )

( )

1 22 2 2 2 2 2

1 22 2 2

sin cos sin cos

sin cos sin cos
sin cos

x r r

r r
x r

q j j q

q j q j
q q

=
∂  + + 
∂

= =
∂  + 

 

 (1)  First step: let us obtain dx, dy and dz in terms of spherical polar coordinates: 

∂x ∂x ∂x x = r sin q cos j , dx = dr + dq + dj
∂r ∂q ∂j 

dx  = sin q cos jdr + r cos q cos jd q − r s in q sin jdj
∂y ∂y ∂y
y = r sin q sin j , dy = dr + dq + dj
∂r ∂q ∂j 

dy  = sin q sin jdr + r cos q sin jd q + r  sin q cos jdj
z = r cos q , dz = cos qdr − r sin q qd  

 (2)  Second step: we obtain the derivatives ∂x/∂r,  ∂x/∂φ, ∂x/∂θ, ∂y/∂r,  ∂y/∂φ, ∂y/∂θ, 
∂z/∂r,  ∂z/∂φ and ∂z/∂q: 

dx  = sin q cos jdr + r cos q cos jd q − r s in q sin jdj
∂x dr dq dj

= sin q cos j + r cos q cos j − r sin q sin j
∂r ∂r ∂r ∂r 
dr dq dj

=1, = 0, = 0 
∂r ∂r ∂r 
∂x 

= sin q cos j
∂r 

dx  = sin q cos jdr + r cos q cos jd q − r s in q sin jdj
∂x ∂x 

= r cos q cos j , = −r sin q sin j
∂q ∂j 

dy  = sin q sin jdr + r cos q sin jd q + r  sin q cos jdj
∂y ∂y ∂y

= sin q sin j, = r cos q sin j, = r sin q cos j
∂r ∂q ∂j 

dz = cos qdr − r sin q qd  

∂z ∂z 
= cos q , = −r sin q

∂r ∂q 

 (3)  Third step: we obtain the inverse of the above derivatives (i.e., ∂r/∂x, ∂φ/∂x, 
∂q/∂x, ∂r/∂y,  ∂φ/∂y,  ∂q/∂y,  ∂r/∂z and ∂q/∂z). Let us begin by obtaining ∂r/∂x: 

∂r ∂ 
= (x

1 2  2 + y 2 + z2 ) , u = x 2 + y 2 + z 2
∂x ∂x 
∂r ∂u1 2  ∂u x 

= = 
∂x ∂u ∂x (x 

1 2  2 + y 2 + z 2 )
∂r r sin q cos j

= 
∂x  (r 2 sin 2 q cos 2j + r 2 sin 

1 2  2q sin 2j + r 2 cos 2q )
∂r r sinq cosj
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∂r r sin q cos j
= 

∂x ( 1 2  
r 2 sin 2q cos 2 j + sin 2j  +  2 2

 r cos q ) 
∂r r sin q cos j 

= 1 2  = sin q cos j
∂x (r 2 sin 2 q + cos 2q  )

The same procedure is used for the partial derivatives of r with respect to y and 
z (∂r/∂y and ∂r/∂z). Then, we have: 
∂r ∂r 

= sin q sin j , = cos j
∂y ∂z 

Let us now obtain ∂j/∂x: 
y ∂ ∂ − ytgj = , ( tgj) = ( y x  ) = 
x ∂x ∂x x
 2

∂ −r sin q sin j −sin ( j
tgj) = = 
∂x r 2 sin 2q cos 2 j r sin q cos 2j 

By knowing that: 

∂ ( 1 ∂jtgj) = 
∂x cos 2j ∂x 

Then, we have: 

1 ∂j −sin j
= 

cos 2 j ∂x r sin q cos 2 j 
∂j  sin j 

= − 
∂x  r sin q 

By using the same procedure, we obtain ∂j/∂y: 

∂j cos j
= 

∂y r sin q 

Let us now obtain ∂q/∂x. 

x 2 + y2

tg q = 
z 

∂ ( 2 ) ∂  x2 + y2  ∂  x2 y2 
tg q =   =  + ∂x ∂x  z 2 

 ∂x z  
2 z2 

  
∂ ( 2xtg2q ) = 
∂x z 2

∂ ( 2 ) 2 r sin q cos j 2sin q cos jtg q = 
x  r 2 c s 2 = 
∂ o q r cos 2 q 
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By knowing that: 

∂ ( 2 ∂q sin qtg q ) = 2
∂x ∂x cos 3 q 

We have: 

∂q  sin q 2sin q cos j 2 = 
∂x  cos 3 q r cos 2 q 

∂q cos j cos q
= 

∂x r 

We use the same procedure to obtain ∂q/∂y and ∂q/∂z. 
∂q cos q cos j

= 
∂y r 
∂q sin q

= − 
∂y r 

 (4)  Fourth step: we obtain ∂/∂x, ∂/∂y and ∂/∂z: 

∂  ∂ ∂r ∂ ∂q ∂ ∂j 
= + + 

∂x ∂r ∂x ∂q ∂x  ∂j ∂x 
∂r ∂q 1 ∂j sin j

= sin q cos j  ∴  = cos q cos j, =  −
∂x ∂x r ∂x r sin q 
∂ ∂ 1 ∂ sin j ∂ 
= sin q cos j + cos q cos j − 

∂x ∂r r ∂q r sin q ∂j
  
∂  ∂ ∂r ∂ ∂q ∂ ∂j
 
= + + 

∂y ∂r ∂y  ∂q ∂y  ∂j ∂y 
∂r ∂q 1 ∂j cos j

= sin q sin j∴ = cos q sin j, = 
∂y ∂y r ∂y r sin q 

∂ ∂ 1 ∂ cos j ∂ 
= sin q sin j + cos q sin j + 

∂y ∂r r ∂q r sin q ∂j
  
∂  ∂ ∂r ∂ ∂q ∂ ∂j  ∂ sin q ∂
 
= + + = cos q − 

∂z ∂r ∂z  ∂q ∂z  ∂j ∂z  ∂r  r ∂q 

Then, we have: 

∂ ∂ 1 ∂ sin j ∂ 
= sin q cos j + cos q cos j −

∂x ∂r r  ∂q r sin q j∂ 

∂ ∂ 1 ∂ cos j ∂ 
= sin q sin j + cos q sin j + 

∂y ∂r r  ∂q r sin q j∂ 

∂ ∂ sin q ∂ 
= cos q − 

∂z ∂r r ∂q 



 

 (5)  Fifth step: we obtain Lx, Ly and Lz.. Let us begin with Lx: 

  ∂ ∂ Lx =  y − z i  ∂z ∂y 
 
  ∂ sinq ∂ 
  y  cosq  −  −   
  ∂r r ∂q 

L =   
x  

i   ∂ 1 ∂ cosj ∂   
−z  sinq sinj + cosq sinj +  
  ∂r r  ∂q r sinq j∂   
 ∂  q − q j + ( y cos z sin sin ) 
 ∂rL x =   
i   y sinq z  ∂ z cosj ∂ + −  −  cosq sinj  −   r r  ∂q r sinq j∂  

z = r cosq , y = r sinq sinj 

 
( ∂  
 r sinq sinj cosq − r cosq sinq sinj) ∂ r  
   r sinq sinj sinq r cosq  ∂ L x = + −   −  cosq sinj  −i  r r  ∂q  
 r cosq cosj ∂ 
− 
 r sinq ∂j  
  ( ∂ ∂ 

 L x = −sinj sin 2q − cos 2 q sinj) − cotq cosj i  ∂q ∂j  
  ∂ ∂ 

 L = si 2 
x (−sinj{ n 2q + cos q}) − cotq cosj  i  ∂q ∂j 
  ∂ ∂ L x = − sinj − cotq cosj i  ∂q ∂j 
 
 ∂ ∂ 
L x = i j + q j sin cot cos 
 ∂q ∂j  

The same procedure is used to obtain Ly and Lz: 

  ∂ ∂ L y = − cosj − q sin  cot j i  ∂q ∂j 
 
 ∂ ∂ 
L y = i− cosj + cotq sinj  
 ∂q ∂j 
 
 ∂
L z = 
i ∂j 
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 (6)  Sixth step: we square Lx, Ly and Lz.. 

 
2 2 

2   ∂ ∂ L x =   −sinj − cotq cosj  =
 i  ∂q ∂j  

 ∂2 ∂  ∂   
 sin 2 j + sinj 2  cotq cosj  + 

2 2 ∂q ∂q   ∂j L 
x = −  ∂2 ∂  ∂  + cotq cosj 2

sinj  + cot q cos 2 j 
 ∂j  ∂q  ∂j 2  
 2 ∂2  2 ∂ ∂   
sin j 2 + sinj −csc q cosj + cotq cosj  

2 2 ∂q  ∂j ∂j  Lx = −  2  ∂ ∂ ∂  
+ cotq cosj cosj + sinj + cot2 2 ∂

  q cos j 
   ∂q ∂ ∂j q  ∂j 2 
 2 

sin 2 ∂ 2 ∂ ∂  
 j 2 − sinj cos j csc q + sinj cot q cosj + 

2 2 ∂q ∂j ∂j
L = −  

x  ∂  ∂ ∂ ∂2  
+ cotq cos2 j + cotq cos j sinj + cot2 q cos2 j
 ∂q ∂ ∂j q  ∂j 2  
  

The same procedure is used to obtain the square of Ly and Lz.. This can be done 
as exercise. 

2  ∂ ∂ 
2 

Ly = − 
2 − q cosj + cot sinj  
 ∂q ∂j 
 2 ∂2 

2 ∂ ∂ ∂  
 cos j + cosj sinj csc q − cosj cotq sinj + ∂q 2 

2 2  ∂j ∂q ∂j 
L = −  

y  ∂ ∂ ∂ ∂2  
+ cotq sin2 j − cotq sinj cosj + cot2 q cos2 j  
 ∂q ∂j ∂q ∂j 2 

 
∂2 

L 2z = −
2 

∂j 2 

 (7)  Seventh step: we obtain L2 by adding the square of Lx, Ly and Lz.. We begin by 
emphasizing the similar terms for the square of Lx and Ly 

 2 ∂2
2 ∂ ∂ ∂ 

sin  j  
∂q 2 − cosj sinj csc q + cosj cotq sinj +

2 2 ∂j ∂q ∂j
L 

x = −   ∂ ∂ ∂ ∂2  
cotq sin2 j + cotq sinj cosj + cot2 q cos2 j  
 ∂q ∂j ∂q ∂j 2 

 
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coscotcossincotsincot

sincotcoscscsincossin

j
jq

qj
jjq

q
jq

jq
jqj

j
qjj

q
j












 
 2 ∂2

2 ∂ ∂ ∂  
cos j 2 + cosj sinj csc q − cosj cotq sinj +  

L2 
y = −

2 ∂q ∂j ∂q ∂j   
 ∂ ∂ ∂ ∂2 
+ cotq sin 2 j − cotq sinj cosj + cot 2q cos 2 j  
 ∂q ∂j ∂q ∂j 2 

 
∂2 

L2 = −2 
z  ∂j 2 

By eliminating the similar terms with opposite signs and summing up all the 
remaining terms, we have: 

L 2 = L2 2 2
x + Ly + Lz 

2 2  ∂
2 ∂ ∂2 

L = −  + cot q + 2 

∂ 2 (cot q +1) 
 q ∂q ∂j 2 
 
 2 2 2 2 

2 ∂ ∂  cos q + sin q  ∂ 
L = − 2 

 2 + cot q +  2  2 ∂q ∂q q ∂j   sin  
  

2  ∂2 ∂  1  ∂2 

L = −2 

 + cot q +   

 ∂q 2 ∂q  sin 2 q  ∂j 2 



2 2  1 ∂ ∂  1  ∂2 

L = −  sin q +  2  2 

 sin q q∂  ∂q  sin q  ∂j 

4.  Tridimensional Laplace operator in spherical polar coordinate 
system 

The tridimensional Laplace operator in Cartesian coordinate system is: 
2 2 2 

2 ∂ ∂ ∂
∇ = 2 + 2 +∂x ∂y ∂z 2

The tridimensional Laplace operator in spherical polar coordinate system is: 

2 1 ∂  2 ∂  1  1 ∂  ∂  1  ∂2 
∇ =   r  +  sin  2 2  q  +  r ∂r  ∂r  r sin q q∂  ∂q  sin 2q  ∂j

2
 
 

2 ∂2 2 ∂ 1
∇ =  + + L 2


∂r  2 r r∂ r
 2 

1 ∂  ∂  1  ∂2 

L =2 

 sin q  +  sin q q∂  ∂q  sin 2 q  ∂j

2 


Where L2 is the Legendrian operator. The above equation is equivalent to: 

2 1 ∂  2 ∂  1
∇ =   r  − 

r 2 L2

∂r  ∂r   2 2r 



∂
∂

+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

∂
∂

+
∂
∂

−
∂
∂

−= xL
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In the fourth step of the last section, we have obtained the following relations: 

∂ ∂ 1 ∂ sin j ∂ 
= sin q cos j + cos q cos j − 

∂x ∂r r  ∂q r sin q j∂ 

∂ ∂ 1 ∂ cos j ∂ 
= sin sin q j  + cos q j  sin + 

∂y ∂r r  ∂q r sin q j∂ 

∂ ∂ sin q ∂ 
= cos q − 

∂z ∂r r ∂q 

In order to obtain the tridimensional Laplacian in spherical polar coordinates, 
the next steps are: (1) to square ∂/∂x, ∂/∂y and ∂/∂z and; (2) to sum these square 
terms. This can be done as exercise. 

Another method to obtain tridimensional Laplacian in spherical polar coordinates 
is based on tensor analysis (which is beyond the scope of this book). See, for example, 
the book of Boas in chapter 10 (Boas 2006). 
The Laplacian can also be expressed as: 

2 2 2 
2 ∂ 2 ∂ 1  ∂ 1 ∂ 1 ∂ 

∇ = 2 + +  + + 2  2 2 2 ∂r r ∂r r ∂q tanq ∂q sin q ∂j  

Proof: 

2 1 ∂  2 ∂  1 ∂  ∂  1 ∂2 

∇ = r + sinq +2   2   2 2 2r ∂r  ∂r  r sinq ∂q  ∂q  r sin q ∂j
 

2 1  ∂ 2 ∂  1  ∂ ∂2 

∇ = 2 2r + r  + cosq + sinq  +2 2  2 r  ∂r ∂r  r sinq  ∂q ∂q 
 

1 ∂2
 

+ 2 2 2r sin q ∂j 
2 2 2 

2 2 ∂ ∂ 1 ∂ 1 ∂ 1 ∂
∇ = + + + +2 2 2 2 2r ∂r ∂r 2 r 2 tanq ∂q r ∂q r sin q ∂j 

then: 
2 2 2 

2 ∂ 2 ∂ 1  ∂ 1 ∂ 1 ∂ 
∇ = 2 + +  + + 2  2 2 2 ∂r r ∂r r  ∂q tanq ∂q sin q ∂j  

5. Particle in a sphere and quantum angular momentum 
For a particle moving in the surface of a sphere of radius a (or simply a particle in a 
sphere), the radial function is constant and the boundary conditions are: 

V (a) = 0 
R(a) = a 
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Then, there is no radial solution and the particle moving in the surface of a 
sphere is restricted only to the angular function. Then, the Schrödinger equation of 
one particle in the surface of a sphere can be written as: 



2

− ∇2Y (q j, )  = EY (q j , )  
2µ 

1 ∂  ∂  1  1 ∂  ∂  1  ∂2 

∇ =2 2 
  r  +  sin q  +   r 2 ∂r  ∂r  r 2 sin q q∂  ∂q  sin2 q  ∂j

2 
 

×r 2 : 


2

− r 2∇2 Y (q j , )  = r 2EY (q j, )  
2µ 

then : 
2 

r 2∇2 2µr E  Y (q j  , )  = − 2 Y (q ,j) 
 

 2 2 2µr E  2 
 r ∇ +  Y (q j , )  = 0
 

2 
 

Since r = constant, the first term in the Laplacian does not contribute (the 
derivative of a function over a constant does not exist) and it can be removed from 
the Schrödinger equation: 

2 1 ∂  2 ∂  1  1 ∂  ∂  1  ∂2 
∇ =  2  r  +    sin q  +  r ∂r   ∂r   r 2 sin q q∂     ∂q   sin 2 q   ∂j 2 

   
1 ∂  r 2 ∂  

2   : removed 
r ∂r  ∂r  
 2 2 2 µ r E  2 
 r ∇ +  Y (q j , )  = 0 
  2 

 
 1 ∂  ∂  1  ∂2  
  si  n q   +    + l 2 2 Y (q j , )  = 0
 sin q q∂   ∂q   sin q   ∂j   

2 µr E  2 

l = 
 2 

The function Y(q,j) is known as spherical harmonics and it is a product of 
the angular or polar equation (from the polar angle q) and the azimuthal equation 
(from the azimuthal angle j). The proof for the equation below is given in chapter 
seventeen (next chapter). 

Y (q , j ) = Θ(q )F(j)
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Let us replace the above equation in the previous Schrödinger equation: 

F (j  ) ∂  ∂Θ (q  )  Θ (q  )  ∂2 F(j ) 
 sinq  +   + Θl q( ) F(j ) = 0

sin q q∂  q  sin 2 q   ∂  ∂j 2      
sin 2 q 

×  
Θ (q  ) F (j ) 

sin q ∂  ∂Θ (q  )  1  ∂2 F(j ) 
 sin q   +   

Θ  )  + l sin 2 q = 0
 (q  ∂q q   ∂  F j ∂j 2    (  )     

The first and third terms depend only on q whereas the second term depends 
only on j. Then: 

sinq ∂  ∂Θ(q )  1  ∂2 F(j ) 
 sinq  + l sin2 q = − 

( ∂q ∂q F(  
Θ q ) j  ∂  )  j 2    

This equality can only be satisfied if both sides are equal to the same constant. 
Since the function F(j) is already known as the function of the particle in a ring, 
then we have: 

1  ∂ F2 (j  ) 
 −   = m2 

F (j   )  ∂j 2 
  

As a consequence: 

sinq ∂  ∂Θ(q )  
sinq  + l sin 2q = m 2

Θ(q ) ∂q ∂q  

The above equation is known as associated Legendre equation (Chapter four). A  
derivation of similar equation is given in detail in next chapter (Chapter seventeen). 
Then, the parameters l and m are restricted to the values (see Chapter four): 

l = l (l +1) , l = 0,1, 2,... 
m = 0, ± ±1, 2,..., ±l 

As already mentioned in the section of the particle in the ring, l is the azimuthal 
quantum number (or the orbital quantum number) and m (or ml) is the magnetic 
quantum number. 
Remember that l was firstly attributed to: 

2µr E2

l = 


2 

then : 
2µr E  2

2 = l l( +1) 




2 

E l = 2 l l( +1)
2µr
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The levels of energy of the particle in a sphere are independent of the second 
quantum number m. Then, the levels of energy are (2l + 1)-fold degenerate. 
Since: 

L2 

T = 
2µr 2

and : 


2 

E = T = 2 l (l  +1)
2µr

Then : 
L2 = l (l  +1) 2 

The amplitude of the (orbital) angular momentum is obtained from the squared 
angular momentum and it is shown below: 

L =  l (l  +1) 
Since l (the azimuthal quantum number) is an integer, the quantum angular 

momentum of the spherical harmonics function (particle in a sphere) is quantized, 
i.e., it can only assume a discrete set of values. 

Since the squared angular momentum and the z-component of the angular 
momentum commute (see Chapter eight): 

[L2, Lz] = 0 

the functions of spherical harmonics, Y(q,j), are simultaneous eigenfunctions of  
L2 and Lz: 

L2Y lm (q , φ ) = l ( l  +1) 2Y lm (q , φ ) 
L z Y lm (q , φ ) = m Y   lm (q , φ ) 

The former equation comes from the Schrödinger equation of the particle in a 
sphere and the latter equation comes from the Schrödinger equation of the particle 
in a ring (Section 3). 

Figure 16.3 shows the discrete values of the orbital angular momentum for two 
azimuthal quantum numbers (l = 1 and 2). 

6.  Commutative property of Hamiltonian and squared angular 
momentum operators 

Let us show that the Hamiltonian and the squared angular momentum have a 
commutative property, that is: 

[H, L] = 0 



 

 Fig. 16.3: Vector model representation of the orbital angular momentum L for (A) l = 1, ml = –1,0,1 and 
(B) l = 2, ml = –2,–1,0,1,2. 
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Proof: 

H , L 2  = HL 2 − L2H =  
 
 2  ∂ 2 2 ∂ L 2   

 = −  + − + V r( )   L2 
  −

2m  ∂ ∂ r 2  r r r 2 2  
   

2   
2  ∂ 2 2 ∂ L 2  

− L −  + − 
 2 2  + 2 2  V r( )  m  ∂r  r ∂r r    
 2 ∂ 2  2 

2  2 ∂ 

2 4 2
2  L  

= −   2 L − L + 2 2  + V (r L  )  2 +
2m ∂r 2m r ∂r 2m r  2m 
 2 ∂ 2  2 2 ∂  2 L 4  2

+ L 2 
2 + L 2 − − L V  2 (r  )  

2m ∂r 2m r ∂r 2m r 2 2  
 2m 

 2 ∂ 2  2 2 ∂  2 

2
2 2  ∂2

= −   2 L − L + V (r L  )  2 + L 2 +
2m ∂r 2m r ∂r 2m 2m ∂r
 2 



2 
2 2 ∂ 

2

+ L − L V  2
 (r  )  
2m r ∂r 2m 
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The total angular momentum operator L2 has only angular dependence. Then, 
the order of the operators products above is interchangeable. Hence, we have: 

 2 ∂ 2 2 2
 2 ∂ 2

= L 2  2 ∂  
− −  2  2 L + V (r L  )  2 + 2

2m ∂r ∂ m r 2 L + 
2m r r 2m 2 ∂
 



2 2 ∂ 
+ L 2 

2

− V (r L  )  2


2m r ∂r 2m 

Which leads to a zero result. 

Exercises 
 (1)  Give the normalization constant of the wave function of the particle in the ring. 
 (2)  Improve the code of the exercise from chapter one (See Exercise section of 

Chapter one) by including: (a) the normalized function; (b) the probability 
density of this wave function. 

 (3)  Obtain the tridimensional Laplace operator in spherical polar coordinates from 
the relations ∂/∂x, ∂/∂y and ∂/∂z obtained in the fourth step of the Section 4. See 
the tips in the Section 5. 

 (4)  Show that: 

[H, Lz] = 0 

Reference cited 
Boas, M.L. 2006. Mathematical methods in the physical sciences. John Wiley & Sons, Inc. Third edition, 

Hoboken. 



r (r )  = − (Q p a e3 ) −2r a0
0  

Where a0 = 5.29 × 10–11m is the Bohr radius. 
 The proton may be regarded at the center of the atom whi

hugely fast ‘around’ the proton (1/137th of the speed of light
regarded as a stationary particle since it is nearly 1836 times he
and the proton moves very, very slowly in response to the
electron. The proton generates a spherical electric field and t
the electron does not vary in time (only in space): 

e2

U r( )  = −K  , K = 1 4  p ∈
r 0 

As a consequence, we can use time independent Schrödi
hydrogen atom.

 In the ground state of the hydrogen atom, the motion of t
out in a spherical distribution. Since U(r) is spherically sym
Schrödinger equation in terms of spherical coordinates (r,q,j) 
coordinates (x,y,z). 

Hydrogen-like Atom and17Atomic Orbitals 

1.  Introduction 
The hydrogen atom has one proton of charge +Q = 1.60 × 10–19C and one electron 
of charge –Q = 1.60 × 10–19C and the charge of the electron per unit of volume is: 

le the electron moves 
). The proton can be 
avier than the electron 
 force exerted by the 
he potential energy of 

nger equation for the 

he electron is smeared 
metrical, we can solve 
instead of rectangular 

We will use the reduced mass, m, of these two particles to solve the problem of 
the hydrogen atom. Notice that we use the same symbol (m) to represent the mass of 
a single particle in the last chapters. The reduced mas of the hydrogen atom is nearly 
the mass of the electron. Then, we can consider the hydrogen atom as a particle in a 
box with spherical, soft walls. 

m m  1836m2 

m = p e = e ≈ m 
m + m 1837m e 

p e e 

Due to the spherical symmetry of the Coulomb potential, there are two 
commuting operators for the angular momentum: L2 and Lz. Since the angular 
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momentum operators do not include the radial variable, another operator needs to 
be included. The third operator is the Hamiltonian, H, because it includes the angle 
and radial variables and it commutes with both L2 and Lz (see previous chapter). 
The complete set of commuting operators (observables) for the hydrogen atom is: 
H, L2 and Lz (excluding the spin which is artificially incorporated in wave quantum 
mechanics). The Schrödinger equation in spherical coordinates is: 

 


2
2  e2 

Hψ = Eψ ,  −  ∇ +V ψ = Eψ , V = −K
2m r  

2  1 ∂  2 ∂  1 ∂  ∂  1 ∂2 
∇ =  2 r  + 2 sin q  + 2    2 2r ∂r ∂ ∂ ∂ q φ   r  r sin q q  q  r sin ∂  

Where K is the electrostatic constant or Coulomb constant. 
The hydrogen-like atoms are any atomic nucleus bound to one electron like 

He+, Li+2, Be+3, so on, having a similar solution as hydrogen atom using Schrödinger 
equation. 

2. Particle in a spherically symmetric potential 
The particle of mass m confined to a spherically symmetric potential with radius a 
has the following boundary conditions: 

 0 if : r ≤ a
V r( )  =  : > a∞ f r 

The time-independent Schrödinger equation in spherical polar coordinate is: 

2 
 2−  ∇ +V r( )  ψ = Eψ 

 2m   

2 1 ∂  2 ∂  1 2∇ =  r − L2   2 2r ∂r  ∂r   r 
1  2 ∂  2 ∂  2  

2 −  r  + L ψ +V r( )  ψ = Eψ
 
2mr  ∂r  ∂r  
 

 1 ∂  2 ∂   
 2   

−2 
 r ∂r  

r 
∂r 

+ 
ψ + ( )  ψ = EV r  ψ 2 2m 1 ∂  ∂  1 ∂

 sin q + 2   2 2 2 r sin q ∂q  ∂q  r sin q j ∂ 

2 /  2× −  ( m ) 
1 ∂  ∂ψ  1 ∂  ∂ψ  1 ∂2ψ r2 + sin q + −2 ∂   2   2 2 2r ∂r  r sin q ∂q  ∂q ∂r   r sin q j 

−
2m [V r( )  − E]ψ = 02
 
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We assume a solution for the above equation based on independent, separate 
variables of the form: 

ψ (r,q , j ) = R(r Y  ) (  q ,j)   

Let us substitute the above equation on the previous Schrödinger equation: 

1 ∂  ∂ R q j2 [ (r Y  )  (  , ) ] 	 1 ∂  ∂[ R(r Y  ) (  q j,  ) ]  
 r  + sin q  + 

r2 ∂r  ∂r  2 ∂q  ∂q 
  r sin q   	  

1 ∂2 [R(r Y  )  (  q j, ) ] 2m 
− [V (r  )  − E  ] R(r Y  )  (  q j, ) = 0

r 2 sin 2 q ∂j 2  2

The above equation becomes: 

Y ( q j, )  ∂  ∂ [R r  ( )] 	   2 R r( )  ∂  ∂ [Y (q j, ) ]  
 r  + sin q  +

r 2 ∂r  ∂r  r 2 sin  q ∂q ∂q   
 

R r  ( )  ∂2 [Y ( ,q j)   ]
 2m 
− [V (r  )  − (  =

	
E  2 ] R(r Y  )   q j, ) 0
 

r2 sin q ∂j 2 

 2 

Dividing the above equation by R(r)Y(q,j), multiplying by r2, we have: 

1 ∂  2	 ∂[R r( )  ]  1 ∂  ∂ [Y (q , j) ]  
 r  + sin q  + 

R r( ) ∂r  ∂r  ( q , j  Y )  sin q ∂q  ∂q 
 
  

1 ∂2 [Y ( ,q j)   ]
 2mr2 
− [V r ( )  − E  ] = 0

Y (q , j) n 2 q ∂ 2 si j 2  

Rearranging the terms, we have: 

 1 ∂  ∂ [ R r  ( )  ]  2 m r 2 


2 
 − [ 

 r 	  V r  ( )  − E] + 
 R r  ( )  ∂r  ∂r 

2 
     

 1 ∂  ∂ [Y  ( ,  q j )   ] 
 sin q 
Y ( q j, ) sin q ∂q ∂q    +    = 0 
 1 ∂ 2 [Y 	 ( ,  q j )   ] 
 + 
 Y ( q j, ) 
 

  sin 2 q ∂j 2 
 

The first two terms of the above equation depend only on the variable r, while 
the last two terms depend only on the angle variables. Then, we have a sum of two 
separate, independent equations: radial equation and angular equation. Except for the 
trivial solution, the only way the sum of the first two terms and the sum of the last 
two terms be zero is when they assume the same constant with opposite signs. Let 
us choose this separation constant as l(l+1), which comes from Legendre equation 
(chapter four). Then, we have the following radial equation: 

1 ∂  2 ∂[ R r  (  )  ]  2 mr 2 

 r  − 2 [V  (r ) − E] = l l  ( +1)
R r  (  )  ∂r   ∂ r    
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And the following angular equation: 

1 ∂  ∂[Y  ( ,  q j)  ] 
 sin q  + 

Y ( q j, ) sin q ∂q   ∂q   

1 ∂ 2 [Y  ( ,  q j)   ]
+  

q j 2 ∂ 2 = − +l l( 1) 
Y ( , ) sin q  j  

3.  Solution to the angular equation 
As it was derived in the Section 2, the angular equation is: 

1 ∂  ∂ [Y  ( ,  q j )  ]  1 ∂2 [Y  ( ,  q j)  ]
 sin q  +  = − +l l( 1)

Y ( q j, ) sin q ∂q  q    ∂  Y ( q , j) sin 2 q  ∂j 2  

Let us substitute the trial function Q(q)F(j) in the above equation: 

1 ∂  ∂ Q[ ( )  q  F(  j )  ] 
sin q  +

Q(q ) F( j ) sin q q∂ ∂q     

1 ∂ Q2 [ ( )  q  F(  j  )  ]
+  = − +l l( 1)

Q( q )  F( j ) sin 2 q ∂j 2  

Hence, we get: 

1 ∂  ∂ Q[ ( )  q  ]  1 ∂2 [ F(  j )  ]
 sin q  +  

Q ( q )si n q q∂  ∂q  F ( j)si n 2 q  ∂j 2 = − +l l( 1)  
    

Next, we multiply the above equation in both sides by sin2q and rearranging: 

1 ∂2 [F(j )  ] sin q ∂  ∂ Q[ ( )q ] 
2 + sin q  + l l( + 1)si n 2 q = 0 

F(j)   ∂j Q( )q q∂  ∂q   

Then, we observe that the Hamiltonian is the sum of two independent separate 
variables: q and j. The first term depends only on j and the other two terms depend 
only on q. Hence, it is possible to separate the above equation in two independent 
equations: the azimuthal angle equation (depending only on j) and the polar angle 
equation (depending only on q). The product of these two angle equations, Y(q,j), is 
called spherical harmonics. 

Y (q ,j) = Q(q ) ⋅F(j) 

3.1  The azimuthal angle equation 

The first part of the above equation (the azimuthal angle equation) is associated with 
a number, let us say –m2, which has the opposite sign of the number associated with 
other two terms (of the polar angle equation) so that the whole equation is zero. Then, 
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1 d 2F(j) 
= −m2 

F(j) dj 2 

sinq d  dQ(q )  
sinq  + l(l +1)sin 2 q = +m 2

Q(q ) dq  dq  

The azimuthal angle equation (first equation) is similar to that of the particle in ring: 

∂2ψ 
= −m 2ψ 

∂j 2 

Then, the solution of the azimuthal angle function, F(j), is similar to that from 
the particle in a ring. 

d 2F( )j 
= − Fm 2 ( )j

dj 2  
F(j) ≈ exp( imj) 

The normalized wave function is: 

1
F(j  ) = exp( imj)

2p 

From the particle in a ring problem, the energy of this system is: 

m 2 2
E = , m = 0,  ± ±1, 2, ... 

2I 
And by knowing the relation between the angular momentum and kinetic energy 

(Section two) and the quantum kinetic energy: 

L2 

T = z , classic 
2I 
m 2 2
T = , quantum 

2I 
We have the equation for the quantum angular momentum in the z axis: 

L2  2 2
z = m  

Lz = ±m 

3.2  The polar angle equation 

Let us now consider the polar angle equation (the second equation with respect to q). 
After multiplication by Q(q), it becomes: 

sinq d  d  
sinq  + l(l +1)sin 2 q = +m 2

Q(q ) dq  dq  

sinq d  dQ(q )  
sinq  + l(l +1)sin 2 q − m 2 = 0 

Q(q ) dq  dq  
×Q(q ) 
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d  dQ(q )   m2 
sinq sinq  +  l(l +1)sinq − Q (q ) = 0

dq  dq   sinq  

Evaluating the first term of the above equation, we have: 

d  dQ(q )   dQ(q ) d 2 Q( q ) 
sinq sinq  = sinq  + q  cosq sin dq  dq   d q 2 

 dq
  

d  dQ(q )  dQ(q ) d 2
 Q(q )sinq sinq  = sinq cosq + sin2 q 
dq  dq  dq d q 2 

Then, the polar angle equation becomes: 

dQ(q ) 2 d 2 Q( q )sinq cosq + sin q + [l(l +1)sin 2 q − m 2 ]Q(q ) = 0  
dq d q 2 

Let us now change the variable q into x and assume x=cos q. Firstly, we have to 
change the derivatives of the above equation: 

x = cos q
 

dQ(q )  dQ( )x dx  dQ( )x 

= = − sin q

dq dx dq dx
 

d 2 Q(q )  d  dQ( )  x  dQ ( )  x d dQ( )x 
=  −sin q  = −cos q −  

d 2 sin q
q dq  dx  dx dq dx 

d 2Q(q )  dQ( )x  d  dx d  Q( )x 
2 = −cos q −  sin q

dq dx dx dq dx 
d 2Q(q )  dQ( )x d dQ( )x 

= −cos q  − sin q 2 (−sin q ) 
dq dx dx dx
 

d 2Q(q )  dQ( )  x d 2Q ( )  x

= − cos q − si 2 

2 n q 
dq dx dx 2

Secondly, we replace the above derivatives in the previous polar angle equation: 

 dQ( )  x  2  dQ( )  x d 2Q ( )x 
sin q cos q − q sin + sin q  − cos q +    sin 2 q 2  +

 dx   dx dx 
 

+  ( +l l  1)sin 2 q − m2  Q  = 
 (x ) 0

Thirdly, we divide the above equation by sin2 q: 

dQ( )  x dQ( )  x 2
2 d Q ( )  x  m 2 

− cos q − cos q + sin q 2 +  l l( +1) − 2  Q(x )  = 0
dx dx dx  sin q 
 

dQ( )  x d 22 Q( )  x  m2 

−2cos q + sin q + 2  l l  ( +1) −

dx 2  Q (x )  = 0
dx  sin q  






( )

( )

2 2

2
2

2

2

cos , sin 1

( )2 1
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x x

d x d xx x
dx dx
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dx dx

q q= = −

Q Q
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Since we assume x = cosq, we have: 

x = cos q , sin 2 q =1− x2 

dQ( )  x ( 2 ) d 2Q( )  x  m2 
−2x + 1 − x  + l l  ( 1) 

dx dx 2  + −  
 1− x 2  Q(x ) = 0
 
 

d  2 d ( )  m2 

− Q + l l( + −1) Q(x) = 0 (1 x ) ( )  x   dx  dx   1 − x 2 

 
which is similar to the associated Legendre equation: 
d  

( d   m2 
1− x  2 ) P xm ( ) + l l  1)   P x  m 

 ( + −  ( ) = 0  dx  dx l 
 2 l

 1− x  

The solutions for the associated Legendre equation are known as the associated 
Legendre polynomials (see Chapter four). 

m (−1)  m l +
2 m / 2  d m

p x   ( ) = (1− x ) (x  2 −1) ll 2 !l l dx
 l +m

−m m (l m− )! p m

l ( )x = (  − 1)  p x( ) 


( l m  + )! l


Then, the solution for the polar angle function, Q(q), is the set of the associated 
Legendre polynomials. 

Q(q ) = Pm 
l (x)  

The orthogonality relation for the associated Legendre functions is shown in 
chapter four to yield: 
1 

m m 2 (l + m ) !
∫ P xl ( )  P xk ( )  dx  = d 
−1 2 1l + ( l m  − ) ! lk 

Then, the normalized polar angle function, Q(q), is: 

 ( l m) !
1/2 

+ | |  2 1l +1) m m  − 
N = ( −  2 (l + m ) ! 

3.3  The spherical harmonics 

As previously mentioned, the spherical harmonics is given by product of the 
azimuthal angle function and the polar angle function. 

Y (q ,j) = Q(q ) ⋅F(j) 

Then, the normalized spherical harmonics is: 
Y (q ,j) = N 'exp(im j) ⋅ N ' ' Pm 

l (cosq ) 

Where 
1/2 

1 m m  +| | 2 1l + ( l m  − ) !N ' = , N '' = ( −1)  
2p  2 (l + m ) ! 
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Then, the normalization constant of the spherical harmonics is the product N’N”, 
giving the following expression for the normalized total angular function, Y(q,j): 

 (l m)!
1/2 

Y ) m+| | 2 1l + −(  
q j ,  = ( −1) m 


m im j

 
 (  Pl (cos q ) e  

4p l + m)! 
The first spherical harmonics, Y(q,j), are shown below: 

Y 0 1 
0 = 

4p 

0 3 Y1 = cos q
4p 

Y ±1 3 
1 = ± sin q exp (± ij ) 

8p 

0 5 Y = (3cos 22 q −1)16p

±1 15 Y2 = ± sin q cos q exp (± ij )
8p 

Y ±2 15 
= ± sin 22 q exp (± 2ij )

32p 

The Fig. 17.1 shows the plot of some spherical harmonics. See in the section 
do-it-yourself activity how to plot these graphs. 

4.  Solution to the radial equation of the hydrogen-like atom 
As it was derived in Section 2, the radial equation is: 

1 ∂  ∂[R r( )  ]  2mr 2 


2 

 r  − [V (r  ) − E] = l l  ( +1)
R r( )  ∂r ∂r 

2 
  

Let us make explicit the expression of the Coulomb potential in the radial 
equation as shown below. See that Z represents the atomic number (number of 
protons in the nucleus). For example, the atomic number of some hydrogen-like 
atoms are: for Z = 1 (for H), Z = 2(for He+2), Z = 3 (for Li+3), so on. 

1 d  2 2 
2 d  2mr  KZe 

 r   R r( ) − − − E  − l( l  +1)  = 0
R(r )  dr  dr   2 

 r 
Ze 2
 1 V (r ) = −K , K  =  = 9×109 Nm2 C −2


r 4p ∈0 

ZV r  

∊

( ) = −2.3  × 10 −28 

r 
where e is the electron charge (e = 1.6021 × 10–19 C) and ∊0 is the vacuum permittivity 
( 0 = 8.854 × 10–12 C/Vm). 
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Fig. 17.1: Graphs of Y0,0, Y1,0, Y0,1, Y2,0, Y2,1, and Y2,2. 

Let us multiply it by R(r) 

d  2 d  2mr 2  KZe 2  
 r  R r  ( )  − 2 − − E R r  ( )  − l( l  +1)  R r  ( )   = 0  dr  dr    r  

By rearranging the second and third terms of R(r), we have: 

d  r 22 d   2m KZe 2 2mr 2  
 r  R r  ( )  +  2 + E − l( l  +1)   R r  ( )   = 0

dr  dr    r 

2 
 



 

 

 Table 17.1: Physical quantities and corresponding units in SI. 

Physical quantity Unit (in SI) 

Energy (E) kg.m2.s–2 

Length (r) m 

Mass (m) kg 

Planck’s constant (h) kg.m2.s–1 
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Let us undimensionalize partially the radial equation. It has two dimensional 
physical quantities: r and E. We have to change r into x and E into e (in p m–1). 

Let us undimensionalize the length r. Table 17.1 shows the physical quantities 
and corresponding units (in SI) related to the radial equation for the hydrogen-like 
atom. 

Let us replace R(r) with y(x) and r with x. Then, we intend to use y and x 
variables instead of R(r) and r variables in the radial equation. 

By knowing that the volume element (dV) in spherical coordinates is given by 
three edges of an infinitesimal cube (see below) according to the Fig. 17.2. 

edge 1: dr 
edge 2 :  rd q 

3 : r sin q jedge d 

Where the edges 2 and 3 are related to the lengths of arc circumferences, l, from the 
relation below: 
Length (m) Angle (degrees) 
2pr 360 
l a 

a p  r⋅ 2 r a p  ⋅l = = or l = a ⋅ r
360 180 rad 

The probability to find the particle between r and r + dr from the center is given by: 

( ,  , )  = R r Y  ( ) ( , )  ψ  q j  r q j 
  

d ⋅ dr
dV = rd q ⋅ r sin q j  

( , r , )then : ψ  q j  
2 rd q ⋅ r sin q j  ⋅ dr =d∫ 

2 ∫= ( )  R r 2 r dr = ( )  y r 2 dr∫ 

Fig. 17.2: Volume element in spherical coordinates. 
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Where we eliminated the angular variables from the integration above since the 

variation occurs only in the radial function.
 
Then, we have:
 

y r( )  y(r  )  = rR r  ( )  ⇒ R r( )  = 
r 

Let us now make the proper substitution of R(r) in the first term of the radial equation: 

d  2 d  d  2 d  1
 r  R r  ( )  =  r  −

 r y(r  )  =
dr  dr  dr  dr  

( )
d 2 ( −2 ) ( −1 ) dy (r )   = r −r y r( )  + = r   
dr  dr 
 

2 d  dy r  ( )   dy r  ( )  dy r  ( )  d  y r( )
= −y r  ( )  + r  = −  + + r

dr    dr  dr dr 2 dr
2 d  2 d  d y r( )  then :  r  R(r )  = r 

dr  dr  2dr 
The radial equation becomes: 

d  2 y r  ( )  2m r  2 KZe  2 2mr 2 E   y r( )  r 2 +  2 +  +  
dr  r  2 − l l( 1) = 0

  r

d  2 y(r  )  2mr K2 Ze  2 2m r E2 l( l  +1)  
⇒ r 2 +  2 2  + 2 −  y r  ( )  = 0

dr  r  r r  
×1 :r
 

d 2 y(r )  2mKZe 2 2m E l(l 
 +1)  
⇒ + 2  + −  y r( )  = 0

dr  r2 
 2 r 2 

 

We have not yet changed r into x. We have only changed R(r) into y(r). Next, we 
will undimensionalize r. Let us make a second substitution: 

 e 2
   2mE 8mE

−  = 2 , e =
 2     

2 2   kg ⋅ m 2 ⋅ s −2  [kg ] 
[   p

− e ] = =   kg ⋅m 2 ⋅ s −1 −1 
  (2 p )   m

 
The negative sign refers to bound states where E < 0. 
Then, in order to undimensionalize the length r, we have: 
x = r ⋅e 

[p ][x]= [m ]⋅ [] p ][ =
m
 

x
 r = 
e 
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As a consequence: 
dxdr = 
e 

d  2 y r  ( )  d  dy r  ( )  
= 

dr 2 dr dr 
1 dr = e dx ,  y(r )  ⇒ y(x )  
then : 
d 2 y(r  )  d dy x  ( )  d 2 y x  ( )

2 = e e  = e 2 

dr dx dx dx2 

The radial equation becomes: 

d 2 y(r ) 2mKZe 2 2mE l( l +1)  
2 +  2 + 2 − 2  y r( )  = 0

dr  r  r  

d 2 
2 y(x ) 2mKZe 2e e 2  2 l(l +1) 

⇒ e    
dx 2 +  2 − − e 2  y x( )  = 0

 x 4 x  

×1 e 2 

d 2 y(x )  2mKZe 2 1 l( l +1) 
+  − −  2   y x( )  = 0

dx  xe 2 4 x2 
 

The Bohr radius is given by the expressions: 



2 4p ∈ 2 

a0 = .  2 [G u . ] = 0
2 [SI ] = 52.86 pm∴

m e  e m ee 

C 
2 2 s 2 −2 2 

⋅ m m kg m kg ⋅
[  s −1    a 0 ] = = [m
] 

[kg ][C ]2 


as : m ≈ me 



2 

then : a0 = 2 = 52.9 pm
me 

Where pm means picometer (10–12 m), vacuum permitivity unit in SI unit might be 

C2.N–1.m-2 or C.V–1.m–1 and G.u. is Gaussian unit.
 
Then, let us use Bohr radius in the radial equation above:
 

d 2 y(x )  2KZ 1 l( l +1) 
+  − −  2  2  y x( )  = 0

dx  xe a 0 4 x  

The equation above is equivalent to the differential equation below whose 
solution, y k

j (x), is also provided. 

 1 2 j + k +1 k 2 −1
yk k

j ' ' (x) + − +  − 
 4 2x 4x2 y j (x) = 0
  

yk (x) = e −x 2 x (k +1) 2 k
j L j (x) 
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Where 

k 2 −1l (l  +1)   =
4 

2KZ 2 j + +k 1 
= 

a0e 2 

The above equation is a slightly different a type of the associated Laguerre 
equation (Chapter 4), See in the Appendix that the replacement of the solution y k

j (x) 
into the above equation along with some derivation yields to the associated Laguerre 
equation depicted below: 

xL k 
j ''( )  x + (1  − +x k ) L k k

j '( )  x + jL j ( )  x = 0

Then, by comparing: 

d 2 y(x )  2KZ 1 l( l +1)  
 

dx 2 +  − − 2  y x  ( ) = 0
 xe a 0 4 x  

And: 

k  1 2 j + k +1 k 2 −1
y k

j ' ' (x) + − + − 2 y j (x) =  0
 4 2x 4x  

We see that: 

k = 2 1l + 

2 j k  + +1  2 j + 2   l + +1 1  then : = = j + +l 1  
2 2
 

and : n = j + +l 1
 

Where n is the principal quantum number. 
Then, we have the following equation: 
2KZ 

= n 
a 0 e

And we can obtain the equation for the total energy E with respect to the principal 
quantum number. 

2KZ 2 4K 2Z 2e = ⇒ e = 
na n a2 2

0 0 

As we have done to undimensionalize r, we obtained: 

 e 
2 2mE 2 8mE

−   = ⇒ e = − 
 2  

2 
 2

By comparing both equations: 

8mE 4K 2Z 2 

− = 
 2 n2a2

0 

K 2 Z 2


2

E = −
2 m n 2 a2 

0 
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The energy can be expressed in Rydberg (Ry): 



2 4p ∈0 
2 

a 0 = [G.u . ,  ] a = 2 0 2 [SI ] 
mee  me e  

1 m ≅ m  e , K =
4p ∈0 

K Z  2 2 2  
 K 2Z  2 2m e2 4

 E = − = − e

2m n  2a  2  2m n  2 4
e 0 e 

K 2Z 2m e  4 Z 2

 E = − e
2 2  = − 2 Ry 

2n  n 
K  2m e  4Ry = e

2 =13.6058 eV 
2 
Z 2 

E h = − 2 (a u. .  ) 
2n

2Ha =1Ry 

Where me is the mass of the electron (me = 9.11 × 10–31 kg), 1 electron-volt is 
equivalent to 1.602 × 10–19 J and Eh is energy in Hartree. 

The atomic unit for energy is Hartree (Ha) instead of Rydberg. As one can see in 
the last equation above, two Hartrees is equivalent to one Rydberg. Then, the energy 
of the hydrogen atom in the ground state (n = 1, l = 0) is –0.5 Hartree. See Table 17.2. 
Let us check the relation between Ry and electron-volt. 

K  2m e  4 (9
2 4 

×
e

10 9 ) (9.109×10 −31 )(1.602×10 −19 )
Ry = = 

22 
2 (1.054  ×10−34 )2 

(81 × 10 18 )(9.109×10 −31 )(6.586×10 −76 )
Ry = 

2.222×10−68 

4.859×10−86 

Ry = −68 = 21.8676×10 −19 J
2.222×10 

1eV 
−19 × 21.8676×10 −19 J = 13.65eV 

1.602×10 J 
Nm 2 C 

2 −2  g [ ] 
[   2 4 −4

 k C 4 

] N m C kgC 4 N 2

Ry  = =
m kg s 

2 m 4kg 2 ⋅ 2 
⋅

− = −22 −1  s kg ⋅ s
  

kg m 
2 

⋅ ⋅ s −2 
[Ry ]   = 2 

−2 = kg ⋅ ⋅m s −2  = J
kg ⋅ s 

The difference between the calculated Rydberg value above and the correct 
one might be attributed to the rounding-off errors used for simplicity reasons in the 
calculations above. 

Important to emphasize that Ry is the Rydberg unit of energy which corresponds 
to the ionization energy of the hydrogen atom and that R∞ is the actual Rydberg 



 

 
 

 Table 17.2: Atomic energies of the hydrogen atom in Rydberg and Hartree according to the principal 

Atomic 

level 

n = 1 

quantum number, n. 

energies of the hydrogen atom 

Energy in Ry Energy in Hartree 

–1 –0.5 

n = 2 –0.25 –0.125 

n = 3 –0.111 –0.0555 

n = 4 –0.0625 –0.03125 
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constant related to the electromagnetic spectra of an atom whose value is 
R∞ = 1.0973 × 107 m–1. 

m ee 
4 

e 
4 

R∞ = = 
m e  

3 2 3
2 ( ) 3
0
∈0 4p  c 8∈ h c  

m ee 
4 

e 
4m e

Ry = hcR = hc = ∞ 2 3 2 28∈0 h c  8∈0 h 

2 2  h 
2 

( ) p 22 = ( ) 4p 2  = 8h2Obs . :  4  
 2p  

Let us come back to the equation of the energy of hydrogen-like atom: 
Z 2 

E = − 2 13.6058 eV 
n 

n = j + +l 1  
From the last equation above, we see that: 

n ≥ l + 1 

For a given l (where j = 0), n = l + 1, n = l + 2,..., so on. We also see that the 
energy depends only on the principal quantum number n. However, the effective 
energy potential (Veff) also depends on the secondary quantum number l (which 
divides the shells into smaller groups called subshells or types of atomic orbitals). 
The secondary quantum number or the orbital quantum number is the quantum 
number of the total angular operator, L, and describes each type of subshell 
ranging from 0 to n–1. Each subshell (S, P, D, F) has a distinguished shape. 
Let us consider again the radial equation in the form: 

2 2d y r ( ) 2mKZe 2mE l l ( +1)  
+ + − y r( )  = 02  2 2 2 dr r  r  

And multiply by –ħ2/2 m: 

2 2 2 2d y r  KZe  [l l( +1)]
 ( )  

− 2 + −   − +  2 ( )  = 0E  y r
2m dr  r 2mr  

2 2 2 2
 ( )  KZe  [l l( +1)]d y r  

⇒ −  + −  +  ( )  = ( )  y r  Ey r  2  2 2m dr  r 2mr  
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As a consequence, the effective potential energy Veff



2 d  2 y r  ( )  
− V   2 + eff y r  ( )  = Ey r  ( )  

2m dr 

KZe 2 


2 [l l( +1)]V C = −  ,V L  =r 2mr 2

2.3× 10 −28 6.1 ×10 −39 [l l( +1) ]V C ( )  SI = −  , V 
r L ( )  SI  =

r 2

V eff = V C +VL 

Where ħ2 is 1.11 × 10–68 (m2.kg.s–1)2; the mass of the electron is 9.11 × 10–31  
kg; VC is the Coulomb potential and VL is the potential dependent on the quantum 
number l (the centrifugal potential). See that the equation of classical VL and the unit 
of VL is also Joule (or kg.m2.s–2). 

L2 L2 

VL (classical ) = 2 , Fcent =
mr mr 3

m 
22 ⋅ Kg ⋅

[   s −1 V  m 2 
L ] = 2 =  ⋅ kg ⋅ −2

 s  or [J ] 
[kg ][ m ]   

See the plots in Fig. 17.3 of the potential energy surface as a function of r 
position and the secondary quantum number, l. 

Then, we have a degeneracy on the energy levels with the same n and different 
l values. By considering 2l + 1 (k = 2l + 1) possible values of the quantum number 
m, the total number of states with same energy, or degeneracy (not considering 
relativistic effects and spin-orbit effects—see Section 7), g, is given below.  Note 
that all subshells in the same shell are degenerate in this scenario where other effects 
are not taken into account (see Table 17.3). 

n−1 

g = n2 = ∑(2l +1) 
l=0 

The degeneracy in each subshell (according to Madelung rule or diagonal 
rule) and the number of projections of angular momentum in each subshell 
are given by 2l + 1. The magnetic quantum number (or the quantum number  
of z-component of the angular momentum, Lz), m, specifies each projection in 
each subshell. It ranges from –l to +l. 

The Fig. 17.3 indicates that there is no degeneracy for l = 0 because the effective 
potential energy depends solely on the Coulomb potential energy unlike l = 1 which 
have a stronger influence of the VL. 
As mentioned before, the solution for the radial equation is: 

yk 
j (x) = e −x 2 x (k +1) 2 Lk

j (x) 

 is: 



 

 Table 17.3: Number of subshells, projections of L, Lz , in each subshell and degeneracy of each shell.
 

Shell Subshells/projections of L (m) g 

S P D 

           
3 9 

0 –1 0 1 –2 –1 0 1 2 

2 4 
0 –1 0 1 

1 
0 

1 

Hydrogen-like Atom and Atomic Orbitals 401 

Fig. 17.3: Plots of the effective potential energy surface, Veff, for l = 0,1,2,3.
 

We can express the indices in terms of n and l, instead of k and j: 

y x  l ( )  = e −x 2 xl+1 2L l+1
n  n l  − −1  ( )x

k = 2l +1, j = n l  − −1  

(k +1 2  ) = (2l +1+1 2)  = l +1  
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And the independent variable x can be written in terms of the principal quantum 
number as well:
x = e ⋅ r

2KZe =
a n0

then :
2KZrx =
a n0

Where j = n–l–1 is the number of nodes of the radial wave function.

j = nodes = n – l – 1

Which can be included in the solution of the radial equation so that we can 
change y(x) into y(r):

l+1

yl l(r) = e−KZr na0
 2 2KZr  2 1 KZr

n   L +  
n l− −1  

 na0 0  na 

At last, let us replace y(r) with R(r):

 2 2KZr 
l+1

 KZr 
rRn l, 1(r) = e−KZ r na0   L2 1l+

na n− −l  
 0 0  na 

y(r) = rR(r)

Then, after division by r where the normalization term A incorporated the factor 
2/na0 from the power term, we have:

−KZ r na0
 2 2KZr  KZr 

l
 2KZr 

rRn l, 1(r) = e    L2 1l+

na − −
0 0 na n l  

    na0 
×1 r

 2 2KZ2 2KZKZKZr r
l


l

R r( ) = eA−KeZ−rKnaZ r0 na
 0    L2 1lL+ 2 1l+ 2KZ2KZr r 

n l, 1, 1− − − −  na n l n l 
 na 0 00 0nana   nana0 0 

R − KZ 2 1
n l (

K  2 
l

= A e Z r na0
r

 
l+

, 1r) ' Ln− −l (r )
 na0 

2 2KZr  KZwhere : r = , 'A = A ⋅  na0  na0

For simplicity, A’ will be represented as A.
Where the formula for the associated Laguerre polynomial is:

i 2
n l

∑
− − i1

l+ − +1 !
L2 1 ( ) (n l )  r 

n l− −1( )r =
i=0 i n!( − l −1− i)! 2( l +1+ i)!
2KZrwhere : r =
na0

( )

0

0

2 1
, 1

0 0 0

2 1
, 1

0

0

2 2 2( )

1

( )

2( ) '

2 2: , '

l
KZ r na l

n l n l

n l

l
KZ r na l

n l n l

KZr KZr KZrrR r e L
na na na

r

R r

KZrR r A e L
na

KZrwhere A A
na

r

r

− +
− −

− +
− −

    
=     

    
×

=

 
=  

 

= = ⋅
0

KZ
na

 
 
 

0

0

0

2 1
, 1

0 0 0

2 1
, 1

0 0 0

2 1
, 1

0

0

2 2 2( )

1

2 2 2( )

2( ) '

2 2: , '

l
KZ r na l

n l n l

l
KZ r na l

n l n l

l
KZ r na l

n l n l

KZr KZr KZrrR r e L
na na na

r

KZ KZr KZrR r e L
na na na

KZrR r A e L
na

KZrwhere A A
na

r

r

− +
− −

− +
− −

− +
− −

    
=     

    
×

    
=     

    

 
=  

 

= = ⋅
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The normalization constant, A, is: 

 2KZ 
3 ( n l  − −1 !)

A =   
 na0  2n (n + l )!3

 

Morse and Feshbach provided the following normalization condition (Morse 
and Feshbach 1953): 

Γ(a b+ +1  
3∞ )

∫ za − z a  a   e L zb ( )  L zb ( )  dz  = db, c  
0 Γ(a b+ ) 
Γ( j ) = ( j −1)! 

The normalization condition for the radial wave function is: 
∞ 

∫ (R r  ( )  )∗ ( R r( )  ) r 2 
n l, n l  , dr  =1

0 
∗ 

∞  
2 −2KZ r na 0 

 2KZr 
l 
   2 

l 

∫ 2 1l +  r ( )  KZ   
A e   Ln l  − −1 r     L 2 1l + 2

  na   na n l− −1 (r )  r dr 
 

0  0    0   
∞ 

2
2 2KZ  −2KZ r na 0

 2KZr 
2l 

∫
 

A  ( 2
  e  L 2 1l + 2
   n l  − −1 ( ) r dr =

0 
 r ) 1 

 na 0   na0  
∞  

2l 

A e  
2

 K r 
∫ 2 −2 Z r na 0 2 KZ

⋅   (L2 1l+ ( r ) ) r 2 n l  − −1 dr =1
0  na0   

2KZr 2KZ na r = , d r = dr , dr = 0 d r 
na0 na0 2KZ 

na 2 

r = 0 r , r 2  na 0 = r 2
 2KZ  2KZ  

∞ 
2 −2KZ r na 0 

 2 KZr 
2l 3 2

∫
 ( ( ) )2 2 1l +  na  

A e⋅   Ln l  1 
0   2 KZr 

− − r    d r
0  na0   2 KZ   na0 

na 3 ∞  2KZr 
2l +2
 

2  0  −2KZ r na  
0 ( 2l+1 2KZr
 A    L n l− − r   ∫ e  1 ( ) )2

d =1
 2KZ  0  na 0  na0 

For convenience, let us simply replace r to z and see the equation from Morse 
and Feshbach is nearly similar to the above equation. 

2  na0 
3 ∞

1 = A  2KZ ∫ e− z az  a  a
 z zL b  L b zdz 

  0
 

 2KZr 
 
z =   , a = 2 1  l  + ∴b  = n l− −1 

 na0  
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After taking out one factor of the power of z (or r), we have now a similar 
expression to that from Morse and Feshbach’s book. 

2 1
2  na

l+


3  ∞
−2KZ r na  2KZr  

A ' 0 0 
2KZr  

( )   ∫ e    
+ 

 L2 1l 
n l  − −1 ( r ) L2 1l + r d r =1  n l− −1 ( )

 2KZ  0  na 0   na0   

Another relation which is important here from Morse and Feshbach’s book 
(Morse and Feshbach 1953): 

z a b +1 L z  b ( )  = (a + 2  b +1)L z  a ( )  − L a ( )  z − (a + b) 2 L ab b+1 b−1( )z
a b  + + 1

Where taking the last term between brackets of the penultimate expression, it 
becomes: 

 2KZr  
 

2 1l+ 2 1l+
 L 1 (r ) = 2n L⋅

na n l  − −  n l− −1 ( r )
 0  

After noticing that the Kronecker delta gives some integrals a zero value when 
the associated Laguerre indices are different. Finally, we have: 

 na 
3 ∞
 

1 = A 2 2n 0 − z 2l +1 2l +1 2l +1
  ∫ e z L 


 
 2KZ 

n l  − −1  zL n l− −1zdz
 0 

na 
3 

2  Γ(2l +1 + n l   − − +
0  1 1)3 

1 = A 2n  
 2KZ  Γ(n − − +l 1 1) 

2  na 
3 Γ + + n 

0    (l 1 ) 3
  1 = A 2n  

 2KZ  Γ(n − l ) 


3  n + !

3 
 na  ( l ) 1 = A 2 2n 

0
 

 2KZ  (n − −l 1 !) 
And the normalization constant becomes: 

 2 KZ
3 

  ( n l− −1 !) 
A =   na n n ) ! 3 

 0  2  ( + l   

Another solution for the normalization constant of the radial equation can be 
found in Pauling and Wilson’s book (Pauling, L. and Wilson, E. B. 1935). 
Then, the final solution to the radial part of the hydrogen-like atom is: 

 2KZ 
3 (n l  − − 1 !) −KZ r na0 

 2KZr 
l 
 

R rn l, ( ) =   3 e   L 2 1l + 
 n− −l 1 ( r )

 na 0  2n (n l  + )!  na  0 

2KZr r = 
na0 
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The formula of the radial distribution for the first states of the hydrogen-like 
atom are given below where K is removed from the equations for atomic units: 

 Z 
3/2 

R = 2e−Z r  a  0
10   

 a0 
 

1  Z 
3/2 

R e−Z r 2a0 
  Zr 

20 =   1− 2  a 0    2a0 
 

1 
3/2
 

−Z r 2a  Z   Zr  
0 


R 21 = e       24  a0   a0   

Let us derive the equation for hydrogen atom in the 2p state (n = 2, l = 1). 

2  l +1 2=  ⋅1  +1  = 3 ,  n l− −1 2=  −1
  −1 = 0 

0 
2 1l + 

( 1) (2 + 3 − 0
 1)! 2 

r
0 

 L  
n l  − −1 = L0 ( r ) = ∑ = 6

0 0! 2  ( − − −1 1  0 )! 2( ⋅1  +1  + 0 ) !  

 2 
3 
 ( n l  − −1 !)  8 (2 − −1 1 !)  a−3/2 

  = = 0
 

 na0  2n (n l  + )!3 3 
 8a0 2 ⋅ 2  (2 +

3 12 6   1 !)   

 2r 
l 

 2r 
1 

r 
  =   =
 na 0   2a0  a0 

a −3/2 −

R 0 r 3/2 
− 2 0 

a 0 r
= 6 ⋅ ⋅e r a  

21 ⋅ = e−r a2 0

12 6 a0 24 a0 

Due to the importance of the atomic physics, there is a set of physical quantities 
which are used in atomic units (a.u.). They are shown in Table 17.4 along with the 
corresponding SI units conversion. 
In atomic units, the radial equation for hydrogen-like atoms become: 

d  2 y(r  ) 2Z  l l( +1)  + +dr  2E − 2  r r 2 = y r( )  0
 

Table 17.4:  Physical quantities in atomic units and SI units. 

Physical quantity Atomic units (expression SI units Conversion 
in SI), [name] 

charge e C 1.602 × 10–9C 
[elementary charge] 

Mass me kg 9.109 × 10–31 kg 

action Ħ m2.kg.s–1 1.054 × 10–34 m2.kg.s–1 

permitivity 1/k (1/4pÎ0) C2J–1m–1 1.11 × 10–10 C2J–1m–1 

length a0 (4pe0ħ2/mea 2
0 ) [Bohr] m 0.5292 Å (52.92 pm) 

energy Eh (ħ2/mea 2
0 ) [Hartree] J 4.36 x 10-18 J 
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5. Numerical analysis for radial equation of the hydrogen-like 
atom

5.1 Guess functions for Numerov integration

This subsection was partly based on Izaac and Wang’s derivation of the Numerov 
method for radial wave function (Izaac  and Wang 2018). Firstly, let us transform 
the radial equation below in order to determine the guess functions for the Numerov 
integration used to obtain the radial wave function of the hydrogen atom.

[ ]

2 2

2 2 2 2

2

2 2 2

2

( ) 2 2 ( 1) ( ) 0

( ) 2 ( 1)( ) ( ) 0

( )

d y r KZe E l l y r
dr r r

d y r l lE V r y r
dr r

KZeV r
r

m m

m

 +
+ + − = 

 
+ ⇒ + − − = 

 

= −

 



Let us first change the variables:

( )1 ,
( ) ( )

r r
y r u
r a ar

r
= =

→

Where a is a constant with length dimension. Then, we have:

[ ] ( )

[ ] ( )

2

2 2 2 2 2

2

2 2

2 2 2

11 ( ) 2 ( ) ( ) 0

:
1( ) 2 ( ) ( )

l ld u E V r
d

l ld u E V r
d

r m γ χ
a r a r

a

r ma γ χ
r r

+  + − − = 
  

×

+  + − − 
  





u(ρ) = 0

u(ρ) = 0

Let us make the next substitutions in the equation above:

0 0

0
0

( ) ( ) , 0

, 0

V r V f r V
E

E V
V

e e e

= − >

= ∴ = − >

Then, we have:

[ ] ( )2 2

0 02 2 2

1( ) 2 ( ) ( ) 0
l ld u V V f r u

d
r ma e r

r r
+  + − + − = 

  

The next substitution is:
2

0
2

2 Vma
γ =


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Then, we have: 

d u2 ( )r  1 l l( +1) + γ 2  f r  ( )  − − e   u(r)  = 0
d r  γ r 2  

d u2 ( )r  1 l l( +1) 
(  + k r ) u (r)  = 

d 2 0 ,  k ( r ) = γ  f r  ( )  − 2 − e r  γ r  

Let us now specify the boundary conditions of the function f (r) in the spherical 
symmetrical potential and choose a as a (near the limit of the non-vanishing potential 
energy): 

 1 for r ≤ a
f r  ( )  = 

 −0 for r > a
a = a 

Then: 

 1 l l( +1)
 1− − e , r a≤

γ r
k ( r )  2 

 = γ  
 1 l l( +1)

−0 − 2 − e , r a> γ r 

The extremes of the wave function u(r) will be used as guesses of the shooting 
method of the inward and outward integrations using Numerov method. 
For small r, the equation: 

d u2 ( )r  1 l l( +1)    
d r 2 + γ  f r  ( )  − − e u(r)  = 0

 γ 2 
 r  

reduces to: 

d u2 ( )  r l l( +1) 
−  u

d r 2 r 2 ( )r = 0 

since the term l(l+1)/r2 will become very large as r2 decreases and the solutions are: 

u ( )  r = r l +1, for : r ≈ 0

Let us check this out: 

d 2 r l +1 l l( +1) 
2 −  r l +1 = 0


d r r 2
 

l l( +1) r l −1 − l l( +1) r l −  1 = 0 

For large r, the equation: 

d u2 ( )r  1 l l( +1)  + γ 2  f r( )  − − e   u(r)  = 0
d r  γ r 2 

  
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reduces to: 
2d u( )r 

− γe u( )  r = 0,  γ > 0 
d r 2 

since the term l(l + 1)/r2 will become very small as r2 increases and V(r) will be zero. 
The solutions are: 

u ( ) = exp( γer ) , for :r − r >> 0 

There are two very different solutions at the boundaries and can lead to totally 
wrong solutions if just a single integration is done throughout the r axis. Then, we 
need to divide the wave function into two parts which meet at the matching point (as 
it was done in Chapter fourteen). 

As above mentioned, the algorithm generates two solutions: (1) one starting 
from small value of r and being integrated outwards and towards the matching point 
r = rm, whose function will be named u < (r); (2) another one starting from very 
large value of r and being integrated inwards and towards the matching point whose 
function will be named u > (r). Important to notice that the same reasoning is applied 
in the code of the Chapter fourteen. 

Being the function u(r) analytic and finite everywhere, the logarithmic derivative 
at the matching point should be well defined. 

<( )  du >( )du r r
 
d r d r
= , at r = rm< ( )  u > ( )u r r 

We can calculate the derivatives above by finite difference approximation 
(Chapter two): 

u > (rm + h) u (r )du > ( )r − >  mforward : ≈
d r h
 

< ( )  u < (rm ) − u < (rm − h)
du rbackward : ≈
d r h 

Then, the criterion for a proper eigenfunction will be: 

f = u > (r + h) − u < (r − h) = 0m m 

The function f is obtained by the integration of the grid points of the pair rho-f 
for a specific energy E. 

5.2 Code for potential energy versus radial distribution 

Next, we provide the equations for the code of the all components of the potential 
energy in SI units. 

This code is slightly inspired from Giannozzi, Ercolessi and Gironcoli (Giannozzi 
et al. 2013) for the radial grid. 



 

 Table 17.5: Selected values of i, r(i) and r2(i) of the radial grid. 

i	 r(i)/Bohr r2(i) 

0 3.4 × 10–4 1.089 × 10–7 

100 9.1 × 10–4 8.2 × 10–7 

500 0.0497 2.47 × 10–3 

750 0.606 0.367 

1000 7.39 54.56 
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Let us go back to the radial equation: 
2d  y r  ( ) 2m l l( +1) + 	 [E −V r  ] −  ( )  ( )  y r  = 02 2 2dr	   r 
 

KZe 2
 

( )  = − , y r V r ( )  = rR 
r 

In this code (HYDROGEN-POTENTIAL) and in the next one, it is used the 
exponential grid to deal with a variable-step grid since there is no symmetry in the 
corresponding wave function. Such grid becomes denser and denser as it approaches 
the origin. In the code of the Chapter fourteen, it was used constant-grid due to the 
symmetry in the wave function of the one-particle quantum harmonic oscillator. 

Do i=0,mesh ! mesh=1000
 oldr = ximin + dr*i
 r(i)= exp(oldr)/zmesh 

End do 

Where zmesh = zeta. The zmesh variable is zeta variable as a real number while zeta 
is an integer. 

In the Table 17.5, there are some selected values of i, r(i) and r2(i). One can see 
that the equations above yield an exponential radial grid which is denser near the 
nucleus than away from it. 

In the code HYDROGEN-POTENTIAL, we use the length unit in meters. Then, 
all the values of r(i) in Table 17.2 have to be multiplied by 5.29 × 10–11 since Bohr 
unit is a0= 5.29 × 10–11m. 
The Coulomb potential energy (whose unit is Joule) is given by: 

2
Ze 1 9 2 −2
( ) = −K K = 9V r ∴ =  ×10 Nm C 
r 4p ∈0 

( ) = 2.3 10 −28 ZV r  − ×  
r 
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The Coulomb potential energy plays sole role only for secondary quantum 
magnetic l = 0. For l  > 0, the potential energy dependent on l (the centrifugal 
potential) has to be included. As it was shown before, we have: 



2	 2 ( )  d  y r  
+Veff ( )  = Ey r  ( )  − y r

2m	 dr 2
 

KZe 2 


2 [l l( +1)]

VC = −  ,VL = 

r 2mr 2 

2.3 10−28 

VC ( )SI = −  
× , Z = 1 
r 

6.1 10× −39 [l l( +1) ]
VL ( )SI = 2r 
V = V +Veff	 C L 

!---------------------------------------------------------------
!Program name: HYDROGEN-POTENTIAL 
!Objective: plot the effective potential energy as a function of radial dis-
tance 
!---------------------------------------------------------------
!The Coulomb potential energy equation is: 
! V(r) = -KZq2/r = -(Kq2)(Z/r) 
! K(Coulomb constant)= 9*109 Nm2C-2 

! q = - 1.602 x 10-19C 
! Kq2=2.3 x 10-28 

! The unit is Joule. We have to change into Rydberg. 
!----------------------------------------------------
! The V(centrifugal) equation is: 
! Vcent=6.1 x 10-39 l(l+1)/r2 (see text) 
! The unit is Joule. We have to change into Rydberg 
!---------------------------------------------------------------
! The unit of the radial distance, r, is meter. 
!---------------------------------------------------------------

Program hydrogen
 Implicit none 

integer :: mesh, n, l, i, zeta 
Real*8 rmin, dr, rmax

 double precision :: oldr, e, kq2, h2m

 double precision, allocatable :: r(:), r2(:), vpot(:), vc(:), vcent(:), veff(:)
 

!----------------------------------------------------
zeta = 1 

!------------------------------------------------------
! Initial data 

rmax= 100. ! Bohr

 rmin= 3.E-4 !Bohr
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dr= 0.005 
! Number of points for the calculation (mesh)=1000 for Z=1 

mesh = 1000
 
Allocate (r(mesh))

 Allocate (r2(mesh))

 Allocate (vc(mesh))

 Allocate (vcent(mesh))

 Allocate (vpot(mesh))

 Allocate (veff(mesh))
 
!User entering data 
Write (*,*) ‘Enter n and l. n > 0 and l=n-1’
 
Read (*,*) n, l
 
If (n<1) then
 

Write (*,*) ‘n < 1. Unphysical.’

 Stop
 

Else if (n < l+1) then
 
Write (*,*) ‘n < l+1. It has to be n=l+1!’

 Stop
 

Else if (l < 0) then
 
Write (*,*) ‘l < 0. Unphysical.’

 Stop
 

End if 
! Initialize exponential radial grid 

Do i=0,mesh
 oldr = rmin + dr*i !oldr is in Bohr unit 

r(i)= (exp(oldr))*5.23E-11 !r(i) is changed to SI unit
 r2(i)= (r(i) * r(i)) 

End do 
!----------------------------------------------------­
! Initialize the potential energy grid 

kq2=2.3E-28
 
h2m=6.1E-39
 

If (l==0) then 
Do i=0,mesh 
vc(i)= -(kq2*zeta)/r(i) 
veff(i)=vc(i) !veff is in Joule unit 

!Let us change vpot unit to Rydberg 
vpot(i)=veff(i)*0.458E+18 ! vpot is in Ry

 End do 
Else if (l > 0) then 

Do i=0,mesh 
vc(i)= -(kq2*zeta)/r(i) 
vcent(i)=((h2m)*(l*(l+1))/r2(i)) 
veff(i)= vc(i)+vl(i) !veff is in Joule unit 



 

 Fig. 17.4: Effective potential energy (in Joules) versus radial distance (in Bohr) of the hydrogen atom in 
(A) 1s state, (B) 3p state and (C) 3d state. 
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!Let us change vpot unit to Rydberg 
vpot(i)=veff(i)*0.458E+18 ! vpot is in Ry 

End do 
End if 
!------------------------------------------------------------------

!Printing results r(i) and vpot(i) in the ‘fileout’ (optional) 
open(7,file=’potential.dat’,status=’replace’) 

do i=0,mesh


 write (7,’(3e16.8,f12.6,3e16.8,f12.6)’) r(i),vpot(i)
 
End do


 write (7,’(/)’)

 !Close(7)
 

!-------------------------------------------------------------------------­
Deallocate (r)

 Deallocate (r2)
 Deallocate (vc)
 Deallocate (vcent)
 deallocate (vpot)
 Deallocate (veff) 

End program 

The results of the code above for hydrogen atom in the 1s, 3p and 3d states are 
shown in Fig. 17.4(A), 17.4(B) and 17.4(C), respectively. 



 

 

  

K 2 Z 2m e4

E = − e

2 n 2 
 2

Z 2 

E = − 2 (a.u.)
2n
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5.3 Code for the radial wave function versus radial distribution 

The code named HYDROGEN-RADIAL is a very simple code that defines the radial 
grid and the potential grid in order to obtain the matching point and to calculate the 
integration of the Numerov wave function starting from the guess initial and final 
values of the function for all 1000 points of the grid. It does not use any resource of 
recursive iteration to improve the wave function. 

Let us change the expression of radial equation of the hydrogen-like atoms 
below from SI units to atomic units: 

2 2 2 2d y r  KZe  [l l( +1)]
 ( )  

−  + −  +  ( )  = ( )  y r  Ey r  2  2 2m dr  r 2mr  
Since e, me e

have: 

1 d  2 y(r  )  l l  ( +1) − + V (r )  − + E  
2 2 y r  ( )  = 2  0

dr  2r 
 
Z Z
V r  ( )  = − ,  E = −
r 2n 2

The energy is given by: 

The effective potential used in the code is given by: 
l ( l  +1) V eff = V r  ( )  +

2r 2

The second term is the centrifugal potential. Let us multiply the radial equation by –2: 

d  2 y(r  )  l l( +1) 
2 + −2V (r  )  + 2E − 2 y r( )  = 0

dr  r  

Let us use the terminologies commonly applied to the Numerov method: 

d  2 y r  ( )  
+ 2 K  2 (r)  y r( )  = 0

dr

Where: 

2 l l( +1)K r( )  = −2V + 2E − 
r 2

However, the code below only works correctly with (–1)K2, that is, 2V–2E+2Vcent., 
where the implicit negative sign of V and E still exists. In the code we use Vcent 
instead of VL. 

 (where m = m ), K, and ħ are one unit each in atomic units, then, we 
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From the Numerov method (see Chapter two), we have the following wave function: 
(12 −10 f )ψ − f ψn n n−1 n−1ψ = n+1 fn+1 

Where: 

h2
2
fn = 1+ K r( ) 
  

12 
h2

2
f = 1+ ( + h 
K r  )n+1 12 
h2

2
f = 1+ ( − h 
K r  )n−1 12 
ψ =ψ (r h) ,  ψ =ψ (r + h)−n−1 n+1 

It is important to not confuse the h from Numerov method (which is an increment) 
with that from Planck constant. In our modified code, h is changed into dr. 

The code below works nearly well for all states of the hydrogen atom. Other 
approaches can be found elsewhere such as Peng and Gong (Peng and Gong 2010) 
and Izaac and Wang (Izaac and Wang 2018) for instance. 

!--------------------------------------------------------------­
!Program name: HYDROGEN-RADIAL 
!Radial equation of the hydrogen-like atom 
!Objective: plot the radial wave function for each n,l pair 
! The equation is atomic units 
!---------------------------------------------------------------
!The Coulomb potential energy equation is: 
! V(r) = -2Z/r 
! The ceentrifugal potential equation is: 
! VL=l(l+1)/r^2 
! The energy is: 
! E=-2*Z/n^2 
!---------------------------------------------------------------
! Use of Numerov method to find the wave function 
! Function fn from Numerov equation is 
! Fn = 1 + K2*h^2/12 , where K2=-2(Veff - E) 
! In the code, h is changed into dr 
!---------------------------------------------------------------

Program hydrogen
 Implicit none 

integer :: mesh, n, l, i, j, zeta, m, maxiter=100 
Real*8 rmin, dr, zmesh, y_out_m

 double precision :: e, fh12, norm, eps=1.0E-6
 double precision, allocatable :: r(:), r2(:), y(:), vc(:), vcent(:), &

 veff(:), k2(:), fn(:), f(:) 
!----------------------------------------------------
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 zeta = 1 
!------------------------------------------------------
! Initial data

 zmesh= zeta !zmesh is zeta as a real number

 rmin= 1.E-5

 dr= 0.005d0
 

!---------------------------------------------------------------­
! Number of points for the calculation (mesh)=1000 for Z=1 
mesh = 1000

 Allocate (r(mesh))
 Allocate (r2(mesh))
 Allocate (y(mesh))
 Allocate (vc(mesh))
 Allocate (f(mesh))
 Allocate (fn(mesh))
 Allocate (vcent(mesh))
 Allocate (veff(mesh))
 Allocate (k2(mesh)) 

!----------------------------------------------------------------
!User entering data 
Write (*,*) ‘Enter n and l. n > 0 and l=n-1’ 
Read (*,*) n, l 
If (n<1) then 

Write (*,*) ‘n < 1. Unphysical.’

 Stop
 

Else if (n < l+1) then 
Write (*,*) ‘n < l+1. It has to be n=l+1!’
 Stop 

Else if (l < 0) then 
Write (*,*) ‘l < 0. Unphysical.’
 Stop 

End if 
!-----------------------------------------------------------------
! Initialize exponential radial grid only for the potential 
! This grid does not work for 1s and 2p states 
Do i=0,mesh

 oldr = rmin + dr*i !oldr is in Bohr unit 
r(i)= (exp(oldr))

 r2(i)= (r(i) * r(i)) 
End do 
!-----------------------------------------------------
! Initialize the potential energy grid for the y(i) 
Do i=0,mesh

 vc(i)= -2*zmesh/r(i) 
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 vcent(i)=(l*(l+1.d0))/(r2(i)) 
veff(i)= vc(i)+vcent(i) 
End do 
!----------------------------------------------------------------------
! Initialize constant radial grid 
dr= 0.02d0

 Do i=0,mesh
 r(i) = rmin + dr*i !oldr is in Bohr unit 

r2(i)= (r(i) * r(i)) 
End do 
!----------------------------------------------------------------------
!Set the eigenvalue 
e= -zmesh/n**2 
!-----------------------------------------------------------------------

 !calculate part of Numerov function f, fh12 and K2
 fh12=dr*dr/12.0d0

 k2= vc-e+vcent

 f(0)= fh12*k2(0)
 

!-----------------------------------------------------------------
!Start Numerov integration 
!----------------------------------------------------------------
!set boundary conditions 
y(0)=r(0)**(l+1) 
y(1)=r(1)**(l+1)

 y(mesh)=dr 
m=0 
!---------------------------------------------------------------
!find the matching point m checking the change of sign of f 

do i=1,mesh
 f(i)= fh12*k2(i) 

if (f(i) == 0.d0) f(i)=1.E-20
 if (f(i) /= sign(f(i),f(i-1))) m=i

 end do 
!--------------------------------------------------------------
 ! With the values of f, obtain fn
 !obtain the y(mesh-1) for inward integration

 fn=1.d0-f
 y(mesh-1)=y(mesh)*(12.d0-10.d0*fn(mesh))/fn(mesh-1) 

!--------------------------------------------------------------
 !Start Numerov outward integration

 do i=1,m-1
 y(i+1)=y(i)*(12.d0-10.d0*fn(i))-(fn(i-1)*y(i-1))/fn(i+1)
 if (y(i) == 0.0d0) y(i)=1.d-20
 end do

 y_out_m = y(m)

 !print *, y(m)


 !------------------------------------------------------------------
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! Start Numerov inward integration
 do i = mesh-1,m+1,-1

 y(i-1)=y(i)*(12.d0-10.d0*fn(i))-(fn(i+1)*y(i+1))/fn(i-1)
 if (y(i-1) > 1.E10) then

 do j=mesh,i-1,-1

 y(j)=y(j)/y(i-1)


 end do

 end if


 end do
 
!------------------------------------------------------------------
 ! rescale function to match at the turning point

 y(:m-1) = y(:m-1)/y_out_m

 y(m:) = y(m:)/y(m)
 

!----------------------------------------------------------------
!Normalization process

 norm = sqrt(dot_product(y,y))

 y=y/norm
 

!----------------------------------------------------------------
!Print the result of the wave function 
do i=0,mesh

 print *, r(i),y(i) 
End do 
!-------------------------------------------------------------
 !Printing results r(i) and y(i) in the ‘radial’ 
open(7,file=’radial.dat’,status=’replace’) 
do i=0,mesh

 write (7,’(3e16.8,f12.6,3e16.8,f12.6)’) r(i),y(i) 
End do

 write (7,’(/)’)
 Close(7) 

!-------------------------------------------------------------------------­
Deallocate (r)

 Deallocate (r2)
 Deallocate (vc)
 Deallocate (vcent)
 Deallocate (veff)
 Deallocate (k2)
 Deallocate (y)
 Deallocate (f)
 Deallocate (fn) 

End program 

The results of the code above for hydrogen atom in the 1s, 2s, 2p, 3s, 3p and 
3d states are shown in Fig. 17.5(A), 17.5(B), 17.5(C), 17.5(D), 17.5(E) and 17.5(F), 
respectively. See that the radial wave function in 1s, 2p and 3d do not have node since 
n–l–1 = 0 for these states. As to 2s and 3p there is one node whereas 3s has two nodes. 



 

 

6.  Hydrogen atomic orbitals 
The product of normalized the spherical harmonics, Yl,m(q,j): 

m+| |  m 2 1  l + (l m− )!
1/ 2 

Y (q , j )  = ( −1)   ( )  P m im 
 l ( cos q )e j

 4p l + m ! 

and the radial distribution, Rn,l(r): 

 2KZ 
3 (n l  − −1 !) l 

  R r −KZ r na 0 
 2KZr  2 1l + 

n l, (  )  =   3 e   L n− −l 1 ( r ) 
 na0  2n (n l  + )!  na0 

2KZr r = 
na0 
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Fig. 17.5: Radial wave function versus radial distance (in Bohr) of the hydrogen atom in (A) 1s state, (B) 
2s state, (C) 2p state and (D) 3s state. 
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gives the hydrogen atomic orbitals or hydrogen-like atomic orbitals: 

Yn,l ,m (r,q ,j) = Rn,l (r ) ⋅Y l ,m (q ,j)
Let us obtain, for example, the atomic orbital 3py: 

8 −3/2  r  r R r3,1 ( )  = a0 1−  e−r a/3 
 0

27 6  6a0  a0 

3 Y (q , φ ) = sin q ⋅e−iφ 
1, −1  8p
 

 8  r  r  
 3 
Y3,1, −1 (r,q , φ )  

 =  a−3/2 
1−  e −r a/3 0  ⋅  sin q ⋅ e −iφ

 0   p 27 6  6a0  a0   8 

8 3  
Y (r,q , φ ) = a −3/2  r  r − r a/3 

0 −iφ
3,1, −1 0 1−  e  ⋅ sin q ⋅  e 27 6 ⋅8 p   6a0  a0  

8 3a−3/2 (  r )  r 
Y r,q , φ  = 0 

3,1, −1 1−  e −r a/3 0  ⋅ sin q ⋅ e −iφ
  27 ⋅4 3 p  6a0  a0 
 

Euler : e −iφ = cos φ − i sin φ ∴i sin φ = 0 (*) ⇒ e −iφ
 = cos φ 

2a−3/2  r  r 
Y 3,1, −1 (r,q , φ ) = 0 1−  e − r a  /3 

 0  ⋅[sin q ⋅cos φ]
27 p  6a0  a0  

1  r 2 
 a 0 =1(SI ), Y 3,1, −1 ( r,q , φ )  =  r r

 2 − 
−

 e /3 sin q ⋅cos φ
27 p  3  

(*) For the purpose of drawing the atomic orbitals (which have only real coordinates), 
we neglect the imaginary part of the Euler’s equation, i.e., i.sin φ = 0. 

The atomic orbitals of the hydrogen atom in atomic units (where a0 = 1, Z = 1 
and K= 1) for its first three shells in s and p sublevels are: 

1 ψ ,0 = − r
1 ,0 e

p 
1  r ψ −r / 2

2,0,0 = 1 − e
2 2p  2  

1 ψ 2,1,1 = r sin q cos j ⋅e−r / 2

4 2p 
1 ψ 2,1, −1 = r sin q sin j ⋅ e−r / 2

4 2p 
1 ψ 2,1,0 = r cos q ⋅e −r / 2

4 2p 
1ψ 3,0,0 = (27 −18r + 2r 2 ) ⋅e−r / 3  

81 3 p 
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Fig. 17.6: Probability density in x,y plane of the hydrogen atomic orbitals (A) 2s, (B) 2p, (C) 3p and (D) 3d. 
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1  r 2 
ψ 3  ,1,1 =  r − sin q cos j ⋅e−r / 3  

27 p  3  

1  r 2 
ψ 3,1, −1 =  r − sin q sin j ⋅e−r / 3  

27 p  3  

1  r 2 
ψ 3,1,0 =  r − cos q ⋅ e−r / 3  

27 p  3  

Notice that the atomic orbitals have four variables (r, q, j and Y). Then, a four-
dimension plot is impracticable and it is necessary to parametrize, e.g., the q as p/2 
in order to obtain 3-D plots. 

The plot of the probability density in the plane x, y of the 2s, 2p, 3p and 3d 
atomic orbitals is shown in Fig. 17.6. Check the do-it-yourself section to learn how 
to generate these figures. 
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Important to add that any pair of s and p orbitals are orthogonal, that is, the 
integration of their product over the whole 3D space is zero. For example, let us 
use the same center for the 1s and 2px orbitals and apply the product of them. The 
result is a new px function bigger than 2px. Its integration gives zero value due to the 
positive and negative lobes of p wave function. 

1s ⋅2 p dτ = 0∫ x 

Even two different pairs of s orbitals (for example, 2s and 3s) are orthogonal due 
to their nodes that change the sign of each s wave function. 

7. Hydrogen fine structure-basics 
The Halmitonian used in this chapter for the hydrogen-like atoms is known as H(0) 

because it does not include corrections such as relativistic effect, Darwin effect 
and spin-orbit effect for an hydrogen-like atom free of external potential (such as 
magnetic field). For a Hamiltonian that is non-relativistic, the speed of light is not 
included in the kinetic energy term. 

Dirac found the Halmitonian that included these natural corrections (excluding 
external fields): relativistic effect (dHrel), the spin-orbit effect (dHspin-orbit) and 
Darwin effect (dHDarwin). 

2 4 2p p 1 1 dV  2H = + V - + ⋅ + ∇ VS L3 2 2 2  2 22m 8m c  2m c  r dr 8m c
     

(0)  H d Hrel d Hspin −orbit d HDarwin 

Taking into account the relativistic effect, the degeneracy of l multiplets for a 
given n, according to g equation, is broken as one can see the equation of the energy 
of hydrogen atom with relativistic correction: 

2
En 

(0)  4n (1) ( )
E = − − 3n l m s rel , , , :  2  2mc l + 

1
2  

(0) 1where : En = − 2 Ry 
n 

When considering the relativistic correction (but not including the spin-orbit 
effect), the energy is dependent on n and l. Then, the degeneracy changes from the 
sum of 2l + 1 ranging from 0 to n – 1 into 2l + 1. The latter is similar to the diagram 
of energy level of the Madelung rule. 

n−1 
(0) = ∑ (2 1),  l + grel = +  2 1g l 

l=0 

The energy of the hydrogen atom, taking into account the spin-orbit effect 
(which is zero for l = 0) is: 

3( ) E (0) 2 
n  j j  ( ) ( ) + −  + −  1 l l  1 (1) n  4 E = , l ≠ 0nljm :spin −orbit ( ) 

mc  1 l l  + l +1 
 2  

j = l s  , s =1/ 2 

j 2 

 ( ) 

+ 



 

 Table 17.6: Energy levels according to shell and subshell after the inclusion of the relativistic and spin-

Shell (n) 

 

orbit effects. 

Subshell (l)/spectroscopic term 

S P D 

   
3 ___ 3D5/2 

___ 3P3/2 ___ 3D3/2 

___ 3S1/2 ___ 3P1/2 

2 ___ 2P3/2 

___ 2S1/2 ___ 2P1/2 

1 ___ 1S1/2 
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Where j is the quantum number for the operator J (sum of the angular momentum 
operator, L, and the spin angular momentum operator, S). 
The combination of both energy corrections, after some derivation, give: 

(0) ( En )2 
 4n 

E = −  −  3 ,  l ≠ 0(1) 
  ( )nljm j 22mc j + 1
 2  

As a consequence, the total energy of the hydrogen atom including relativistic 
and spin-orbit effects is: 

e2 1  a 2  n 3  
E = − 1+  − nljm j 2  2  1 2a0 n  n  j + 2 4  

Then, when taking into account both relativistic and spin-orbit effects, the 
degeneracy grel = 2l + 1 is broken. Now, the states P1/2 and P3/2 have different energies 
and the states D3/2 and D5/2 are not degenerate any more. The combination of both 
effects leads to the energy diagram depicted in Table 17.6 for the first three states of 
the hydrogen atom. 

Do-it-yourself activity 
 (1)  Plot the spherical harmonics in GNUPLOT. 

Be aware that: (I) GNUPLOT does not recognize complex number i and the equation 

exp(i*j) has to be replaced by sin(j) or cos(j) according to the Euler function 

and that we neglect the imaginary part; (II) variable u replaces q and variable v 

replaces j; (III) for the spherical harmonic functions, use the implicit function sqrt 

in GNUPLOT to represent square root function and pi to represent p.
 
Tip: type the following statements just once:
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Set parametric
 
Set urange [0:pi]
 
Set vrange [0:2*pi]
 
Set isosample 36,36
 
Set ticslevel 0
 
Set size 0.65,1.0
 
Y(u,v)={spherical harmonics function}
 
Fx(u,v)=sin(u)*cos(v)*abs(Y(u,v))
 
Fy(u,v)=sin(u)*sin(v)*abs(Y(u,v))
 
Fz(u,v)=cos(u)*abs(Y(u,v))
 
Splot Fx(u,v),Fy(u,v),Fz(u,v)
 

Henceforth, to plot other spherical harmonics one needs only to retype the 
following statements: 

Y(u,v)={spherical harmonics function} 
Splot Fx(u,v),Fy(u,v),Fz(u,v) 

 (2)  Draw the contour plot of the probability density of the orbitals 2s, 2p, 3p and 3d 
using GNUPLOT. 

Tips: 
 (I)  We have to change from polar coordinates to Cartesian coordinates. 
 (II)	  The probability density contour plot will be plotted in the xy plane (where  

z = 0). Then, we have to set q = p/2 and the probability density will be 
function of r and j, i.e., P(r,j). 

(III)  	 you have to use the following general equations: 

r = x2 + y2

rho = (2 . / n)⋅ r 

 y j = arctan	  
 x  

pq = 
2 

 (IV)	  There are specific functions for q and j. Each of them have part of the 
normalization constant of the spherical harmonics: N’ and N’’ derived from 
their own isolated functions. 

 (V)	  There is a specific function for radial distance r (named rad) containing the 
normalization constant of the radial function. 

 (VI)	  The final function, the probability function, is the square of the product of the 
functions for r, q and j. 

 (VII)  There is a common part of the script for all cases: 



 424 Quantum Mechanics: Detailed Historical, Mathematical and Computational Approaches 

Set contour 
Unset surface 
Set cntrparam levels 5 
Set cntrparam levels incremental 2.e-5,2.e-5 
Set isosamples 50 
Set xrange [–20:20] 
Set yrange [–20:20] 
Set view 0,0,1.15, 
Set size 0.62,1 

 (VIII)  When it is possible, avoid functions containing q. For example, choose Y2,1,0  
instead of Y2,1,1 or Y2,1,–1. Then, the function for q will be only part of the 
normalization constant. 

 (IX)  Let us see one example: 

set contour
 
unset surface
 
set cntrparam levels 5
 
set cntrparam levels incremental 2.e-5,2.e-5
 
set isosamples 50
 
set xrange [-20:20]
 
set yrange [-20:20]
 
set view 0,0,1.15,
 
set size 0.62,1
 
rfun(x,y)=sqrt(x**2+y**2)
 
phi(x,y)=atan(y/x)
 
thetafun=1./sqrt(32.)
 
phifun(x,y)=(1./sqrt(pi))*cos(phi(x,y))
 
rad(x,y)=rfun(x,y)*exp(-rfun(x,y)/2.)
 
f(x,y)=(rad(x,y)*thetafun*phifun(x,y))**2
 
splot f(x,y)
 

Since n = 2 and r = r, we omitted the function rho in the script above. 

r n=2 = (2 2)⋅ r = r

Exercises 

 (1)  Plot the probability density functions for the radial wave functions shown in the 
Fig. 17.5 by using the code HYDROGEN-RADIAL incorporating the function 
P(r) for the probability density. 

 (2)  Obtain the radial distribution of the hydrogen atom for n = 3 (l = 0,1,2) using the 
general formula: 

http:0,0,1.15
http:0,0,1.15
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 2 
3 ( n l −1 !) l 
 −   

R r  (  )  =   e  −r na 2r 
  0 


n l  , 3   L2 1  l+ 

l 1 (r ) 
 na  2 n  

n
 na − −

0  +  ( n l  ) !   0  

2r r = 
na0 

n l  − −1  
2 1  l + ( −1 

∑
 ) i  

2 i

  + r 
L ( )   ( n l  ) !

n l  − −1  r = 
i = 0 i n  !  ( − l  − 1  − i  ) ! 2  ( l  +1   + i  )  !  

Later, plot these radial distributions in the GNUPLOT. 
Answer: 

2 2 

R (  r )  = a−3/ 2   2r 2r  −r a/ 3  0
3,0 27 0 1− + 

 3a a2 e 
0 27 0  

8  r  r R3,1 (  r )  = a−3/ 2  r a/ 3  0
0 1− 

−
 e

27 6  6a a0  0 

4 3/ r 2


R − 2  −r a/ 3  0

3,2 (  r )  = a


 
e
 

81 30 0 a2
0

 (3)  Obtain the atomic wave function of the hydrogen atom (Z = 1) for 1s, 2s, 2p, 3s, 
3p and 3d states. 
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Helium Atom, 
Variational Method and 18Perturbation Theory 

1. Helium atom 
After the hydrogen atom, helium is the simplest atom whose nucleus has two protons 

and two neutrons and the electrosphere has two electrons.
 
The operator of the kinetic energy in tridimensional cartesian coordinates is: 


2 2 2 2 2
  ∂ ∂ ∂  

T = −  + +  = −  ∇2
 2 2 2 2m  ∂x ∂y ∂z  2m 

Then, the Hamiltonian of the hydrogen-like atom is given by: 
2 2 2
 ∇ ZeHH = −  −
2m r 

Where Z|e| is the charge of the hydrogen-like nucleus and r is the position vector of 

the electron. 

Then, the Hamiltonian of the helium atom is:
 

2 2 2 2 2 2 2
 ∇1  ∇2 Ze Ze eHHe = −  −  − − +  

  
2m 2m r1 r2 r r1 − 2 

The last term in the above equation refers to the repulsion between the two 
electrons of the helium atom. 

Then, we can state that the Hamiltonian of the helium atom can be expressed 
as the Hamiltonian of two hydrogen atoms, H1 and H2, plus the electronic repulsion 
term, Vee. 

HHe = HH1 + HH2 + Vee 

Since there is no exact solution for the above Hamiltonian, three approximate 
methods can be considered to solve the Schrödinger equation for the helium atom. 
They are: the model of distinguishable non-interacting particles, the variational 
method and the perturbation theory. 
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2. Model of distinguishable non-interacting particles 
The model of distinguishable non-interacting particles is an approximation method 
to obtain the approximated wave function and energy of a multi-electron system. 

The electrons (as well as protons and neutrons) are indistinguishable because 
their intrinsic physical properties (e.g., mass, electric charge, spin) are similar and 
the impossibility to track each individual trajectory due to their wave function nature. 

In the model of distinguishable non-interacting particles, there are N electrons 
which do not interact among them and experience different potential, V(xi), and 
different mass, mi. 

The Hamiltonian of the single atom with N distinguishable non-interacting 
electrons is the sum of the N one-electron Hamiltonian. 

N N 2 2 ∇i 
H	 = H = ∑ −

 
+V ( )xN	 ∑ Hi  1 
 

i=1 i=1  2mi 
 

The wave function of the single atom with N distinguishable non-interacting 
electrons is the product of N one-electron hydrogen wave functions. 

N 

= Y ... x = ∏ ( ) Y (x ,x ,...x ) Y ( ) ( ) x x Y ( ) Y xn1 ,n2 ,...nN 1 2 N n1 1 n2 2 nN N ni i
 
i=1
 

Where ni is the ith electron and xi contain all the information of the ith electron. 
The total energy of the single atom with N distinguishable non-interacting 

electrons is the sum of the N one-electron energy. 
N 

En ,n ,...n = e n + e n + ...+ e n = ∑e n1 2 N 1 2 N i 
i=1 

The wave function of the single atom with N distinguishable non-interacting 
electrons is the guess function to be used in the variational method. 
The Schrödinger equation for the N distinguishable non-interacting electrons is: 

(x x ,..., x ) = E Y x x ,..., x )H Y ,	 ( ,, ,..., n 1 2 N  n n  ,..., n  n n  ,..., n 1 2n n 	  , , N1 2 N	 1 2 N 1 2 N 

Which is separated into N equations: 

 


2∇i 
2 

− V ( ) Y ( ) e Y+ x x = ( ) x i i  n i n n ii i i2m i  

Example: Find the ground state eigenvalue and wave function of a system 
containing four distinguishable non-interacting spinless electrons within an infinite, 
unidimensional potential well with length a. 
Solution: Each electron moves in a potential whose boundary conditions are: 

Vi(xi) = 0 for 0 ≤ xi ≤ a 

Vi(xi) = ∞ for xi ≥ 0 and xi ≥ a 



( ) , 1, 2,3, 4
i in n iE x iY =

( )22

22
i

i

n i
n

i i

d x
E

m dx
Y

− =

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The Schrödinger equation for this system is: 

∑
4  

 2 d 2 
 − Y  

2m dx2 n n  1 , 2 ,n 3 ,n 4 
( x 1, x 2 , ,  x 3 x 4 ) = En n  , Y 

1 2 ,n 3 ,n  4 n n  1 , n 1
i 

2 ,n , 4 
( x , x 2 , ,  x3 x4 )


3

=1  i i  

Let us separate the above equation into: 

 2 d 2Yni 
( xi )−  = εn Y  =

i ni 
( x ii ) , 1, 2,3, 4  

2m 2 
i dxi   

The energy and wave function of the ith electron is: 

 2  π 2 2ni 2  n π  en = , Y ni 
( x i ) = 

i 2 sin 
i

 xi 2m a  i a   a 

The total energy and total wave function are: 

 2π 2  n2
1 n2 n2 n 2 

E 2 3 4
n n  1 , , ,n n = + + +

2 3 4 a 2  2  m1 m2 m3 m4  

4 (  n 1π    n 2 π   n 3π   n 4π Yn n1 ,  
2 ,n3 ,n 4 

x1, x2 , x3, x4 ) = 2 sin  x1 sin  x2  sin  x3 sin  x a  a   a   a   a 4 
  

In the ground state, n1 = n2 = n3 = n4 = 1, then we have: 



2π 2  1 1 1 1 
E 1,1,1,1 =  + + + 2a 2 

 m1 m 2 m3 m4  

4 ( )  π   π   π   π Y1,1,1  ,1     x1, x2 , x3, x4 = 2 sin  x1 sin  x2 sin  x sin  x a  a   a   a 3 4 
   a  

3.  Variational method 
The variational method is another approximation method to obtain the approximated 
wave function and energy of a multi-electron system. 

The variational method starts with a guess function, named F, whose energy, 
Ei, is higher than the energy of the actual, exact wave function, Y, so called E0 (the 
energy of the ground state), or both energies are equivalent (if the guess function is 
indeed the actual, exact wave function). Since the last possibility is nearly impossible 
for the guess function, one needs to change the starting guess function in order to 
obtain smaller and smaller energies until no change is found. 

E  H = ∫F*
i = F F HFdτ ≥ E0 

With the aim to change the wave function, we have to use the expansion of a 
guess function using a discrete, complete basis set. The basis set is based on the 
hydrogen atomic orbitals, jk. 

F = ∑akjk 
k 



*H∫
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Where ak is the expansion coefficient of kth hydrogen atomic orbital. Note that 
Schrödinger equation applied to: (1) Y gives the ground state energy, E0; (2) F gives 
the energy Ei; and (3) jk gives the energy of each atomic orbital, ek. 

HY = E0Y 

HF = EiF 

Hj k = e kjk 

Let us use the expansion of the guess function in the integration to obtain the 
expectation value. 

∫F* HFdτ = ∫∑a *j*
k
 k H ∑a jj jdτ = 

k j
 

= ∫∑a* * j * * 
kjk ∑a j H jdτ =∫∑akjk ∑a je jj jdτ = 

k j k j 

= ∑∑ a* * 
k a je j 

j 
∫jkj jdτ 

k

Since all hydrogen atomic orbitals are normalized: 

∫
∞

jijidτ =1 
−∞

And two different hydrogen atomic orbitals are orthogonal (i.e., integrating the 
product of both functions yields a zero value), the Kronecker delta, δkj, can be used 
in the last expression as a orthonormality condition. 

∫ F F* H dτ = ∑∑a a  * e j ∫ j*
kj dτ = a a   *k j j ∑∑ k  j  e jδkj  

k j k j 

The Kronecker delta gives all the terms zero value except when k = j. In this 
case, we have: 

∫Φ*HΦF Fdτ = ∑a a*
k E  = ∑ a 2 

k k k
 Ek 
k k
 

When k = 1, the E1 corresponds to the most low-lying eigenvalue of H or the 
ground state energy. Then, we have: 

Ek ≥ E1 , k =1, 2,3,... 

then  : a E2 2
k k ≥ a Ek 1

hence : ∑ a 2 E 2 
k k ≥ ∑ ak
 E1

k k
 

As a consequence, we have: 

∫ F F*H dτ = ∑ a E2 2 2
k k ≥ ∑ a Ek 1 = E1 ∑ ak
 

k k k
 

By using the normalization condition: 

∫ F F* dτ =1, ∫ j j* d  τ  =1 
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And the expansion of the guess function: 

F = ∑akjk 
k 

We have: 

 * *  *1 = ∑ak kj ∑a jj j 


dτ = ∑∑a ak j j j  τ  k 

* 
jd =∫ ∫

 k j  k j 

2*1 = k δkj = ∑ a∑∑a a j k
 
k j k
 

Then, let us use the above relation in the equation: 
2

∫ *H dτ = ∑F F  a 2 Ek ≥ E1 ∑ ak k
 
k k
 

since : ∑ a 2 =1k
 
k
 

*H ≥ Ethen : ∫F Fdτ 1 

Let us now suppose that the guess function F is not normalized. Then, it is 
needed to add the normalization constant in the above equation to give: 

|N|2 ∫Φ*HΦdτ ≥ E1 

The equation for the normalization constant is given below: 

Φ**Φ τ 
* 2 F Fd =1( NΦF) ( NFΦ) dτ = N∫ ∫ 

2 1N =
 
∫Φ**Φdτ
F F  

Then, the equation of the variational method for non-normalized guess function 
(the variational integral) is: 

*H dτ∫F F  
* 

≥ E
 
F Fdτ 

1


∫ 
With the aim to approach the ground state energy E1, it is needed to test different 

guess functions in order to obtain lower and lower eigenvalues of Ek. The best guess 
function gives the value closest to E1. 
Example: Find the guess function for the electron in an unidimensional box with 

length l. 

Solution: The boundary conditions are:
 
Y = 0 for x = 0 and x = l
 

And F = 0 for x = 0 and x = l
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In Chapter fifteen, we found that the wave function Y does not have nodes 
within the box in the ground state, then the guess function F should follow the same 
condition. As a consequence, the simplest function that satisfies these conditions is 
the parabolic function: 

F = x (l x  − ) = xl x  − 2 ∴0 ≤  x ≤ l 

The Hamiltonian within the box is: 



2 d 2 

H = − 
2m 2

i dxi 

Since the guess function is non-normalized we have to use the variational 
equation for non-normalized guess functions. Let us find each term of the non-
normalized variational integral. The numerator is: 

2 l 

∫F F*  H dτ = − ∫ (lx − x 2 ) d 2 

2 (lx − x 2 ) dx 
2m 0 dx 

d ( 2 dlx  − x ) = l − 2 ,  x (l − 2 x ) = −2
dx dx 
 2 l 

∫ ( 2 )( )  2 l

− lx − x −2  dx  = −  x 2 − lx dx  =
2m m ∫ ( ) 

0 0 

 2  1 2 3  

− x 3 |l 1 2 l   l−    lx | =m 3 0 2 0 
 6m 

The denominator of the non-normalized variational integral is: 
l 

∫ F F* dτ = ∫ x 2 (l − x)2 dx =
 
0
 

l 

∫ ( x2 2  l − 2x3l + x 4 )  dx =
0 
l l l 

∫ ( x2 2  l ) dx −∫ ( 2 x3l ) dx +∫ ( x4 ) dx 
0 0 0 

l2 3x  x l4  x 5| l − | l +  | l0 0 0 =
3 2 5 

10l 5 −15l 5 + 6l5 l 5
= 

30 30 

By replacing both terms in the non-normalized variational integral, we have: 

 2 3  l 6m 5 2 5h2

= ,  2 = h 2 ,  
 2 2  ≥ E
l5 π

30 ml 
 4π l m 1 
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The error of this result is: 

 5h2   h2 
 2 2   −  
 4π l m    8l 2 

 m   ×
h2 

100%  =1.3% 
  
 2 
 8l m   

The normalized guess wave function is: 

F = ( 30 l
1/5 ) 2 

x l( − x) 

4.  Perturbation theory (case: non-degenerate systems) 
The perturbation theory is a mathematical method to find approximate solution for a 
problem without exact solution which has as a starting point the exact solution of the 
related problem. The perturbation theory is only applicable when it is possible to add 
a small term to the formulated problem. 

The perturbation theory is based on the hypothesis that the formulated problem 
with non-exact solution is only slightly different (it has a small deviation) from 
that one having an exact solution. The perturbation theory can be used when the 
difference in solution between both problems is small. 

As to the Hamiltonian of the formulated problem with non-exact solution, the 
contribution (the small difference) to the Hamiltonian, Hp, is added to the Hamiltonian 
which has an exact solution (H0). Then, the perturbation theory builds approximate 
solutions (H) from exact solutions. 

H = H0 + Hp 

From the perturbation theory, the Hp is very small compared to H0 (Hamiltonian 
of the non-perturbated system). 

Let us consider the system with exact H0 non-degenerate eigenvalues, that is, 
each energy, E (0)

n , has a distinct value which corresponds to only one eigenstate φn  
(wave function of the system with exact solution). The Schrödinger equation (using 
Dirac notation) of the system with exact solution is: 

H = E (0) 
0 φn n φn 

Where n is the principal quantum number. The Schrödinger equation of the formulated 
problem with non-exact solution is: 

H ψ n = En ψ n 

The main idea of the perturbation theory is to assume that the perturbated 
eigenvalues and eigenstates can be expanded in a power series (Taylor series—see 
Chapter two) over the parameter λ (real dimensionless parameter which delimits a 
very small contribution to the perturbation). 

H p = λH ' ,  λ  1 
H H= 0 + λH '
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Let us assume the wave function of the exact solution, φn, as the zeroth order 
wave function of the perturbated series (ψ0 

n):

φ = ψ (0) 
n n 

Then, we have: 

(H0 + λH ') ψ n = En ψ n 

E = E (0) + λE (1) + λ 2 E (2) + +... λ k 
n n n n E (k ) 

n 

ψ (0) (1) (2) k (k ) 
n = ψ 2 

n + λ ψ n + λ ψ n + +... λ ψ n 

( )k 1 ∂kψ n ( )  k 1 ∂k Eψ n
n = , En = k k , k =1,2,3... 

k ! ∂λ
λ→

k ! ∂λ0 λ→0 

By using the expansion of En and ψn in the above Schrödinger equation, we have 
the Taylor series (Chapter two) of the perturbated system: 

H ψ (0) + λ (H ' ψ (0) + H ψ (1) ) + λ 2 (H ' ψ (1) 2) 
0 n n 0 n n + H ψ (

0 n ) + =...

E (0) ψ (0) + λ (E (1) 
n n ψ (0) E (0) 

n n + (1) 
n ψ n ) +

+λ 2 (E (2) ψ (0) + E (1) ψ (1) + E (0) ψ (2) 
n n n n n n ) + ...

It is important to add that there  are cases where the perturbation is small but 
En and ψn are not expandable in the power of the parameter λ. Besides, there are 
cases where these series are not convergent, but the first terms provide a reasonable 
description of the system. Then, if we truncate the above expansion to one term (first 
order correction) or two terms (second order correction), the convergence problem 
is avoided. 

The above series shows the zeroth, first and second order corrections. These 
corrections are respectively explicit as zeroth, first and second order corrections 
below. 

H ψ (0) 
n = E (0) 

n ψ (0) 
0 n 

H0 ψ
(1) 
n + H ' ψ (0) 

n = E (0) 
n ψ (1) 

n + E (1) ) 
n ψ (0

n 

H ' ψ (1) 
n + H0 ψ

(2) 
n = E (2) ψ (0) 

n n + E (1) 
n ψ (1) 

n + E (0) 
n ψ (2) 

n 

4.1  First order perturbation theory 

Let us take the explicit first order correction below (in terms of λ): 

H (1) (0) (0) (1) (1) (0) 
0 ψ n + H ' ψ n = En ψ n + En ψ n 

And rearrange this equation as: 

H ψ (1) − E (0) ψ (1) = E (1) 
0 n n ψ (0) (0) 

n n n − H ' ψ n 
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Now, we multiply both terms of the above equation by the complex conjugate of 
ψ0 , which is ψ (0)

n m | in Dirac notation. Then, we have: 

ψ (0) H ψ (1) 
m 

〈

− E (0) 
n ψ (0) 

n m ψ (1) 
0 n =

= E (1) 
n ψ (0) 

m ψ (0) 
n − ψ (0) 

m H ' ψ (0) 
n 

By using the Hermetian property for the first term of the left side of the above 
equation, we have: 

* * 
ψ (0) H ψ (1) = ψ (1) H ψ (0) 

m n = ψ (1) 
n H0ψ (0) 

0 n 0 m m =
* * 

= ψ (1) (0) (0) (0) (1) (0) (0) (0) (
n E 1) 

m ψ m = Em ψ n ψ m = Em ψ m ψ n 

Where : H0 φn = E (0) 
n φn 

Let us suppose that n corresponds to the ground state and m corresponds to the 
first excited state. 
By replacing the resulting first term in the previous equation, we have: 

E (0) 
m ψ (0) 

m ψ (1) 
n − E  (0) 

n ψ (0) 
m ψ (1) 

n =

= E (1) (
n ψ (0) 

m ψ 0) 
n − ψ (0) 

m H ' ψ (0) 
n 

Which gives: 

( E (0) − E (0) ) ψ (0) ψ (1) (
m n n = E 1) 

m n ψ (0) 
m ψ (0)  (0) 

m ψ (0) 
n − ψ H ' n 

By knowing the Kronecker delta as: 

δ (
mn = ψ 0) ψ (0) 

m n 

We have: 

( E (0) − E (0) (0) 
m n ) ψ m  ψ (1) = E (1) ψ (0) 

n δmn − ψ (0) 
n m H ' n 

4.1.1  m = n 
If m = n, then left side of the above equation is zero and Kronecker delta is a unit. 
Then, we have the first order correction to the eigenvalue of the formulated problem. 

E (1) 
n = ψ (0) ψ (0) 

n H ' n 

If we truncate the series to the first order, then the total energy of the system with 
non-exact solution is: 

E =  (0) 
n  E (0) 

n + ψ (0) 
n H ' ψ n 

Example (1): Find the first energy correction for the unidimensional non-harmonic 
oscillator with the following Hamiltonian: 



2 d 2 1 H = −  + kx  2 + cx 3 + dx 4
2m dx2 2 
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Where k, c, and d are constants.
 
Solution: The system with exact solution is the Hamiltonian of the harmonic 

oscillator:
 

 2 d 2 1H  (0) = −  + kx 2
2m dx2 2 

Remember that the ground state wave function (n = 0) for the unidimensional 
harmonic oscillator is: 

ψ ( )  x  (
2

=
x 
 

 N 2

n H  y e  )  − α

1 N = (α π )1/4 
n  

2 !n n 
n = 0,  H x  ( )  =1 

2 

ψ ( )  x = (α π )1/ 4 e −
α x

2

The Hamiltonian of the first order correction is the difference between the 
Hamiltonian of the formulated problem and the Hamiltonian of the zeroth order 
correction: 

H ' = H H− (0) 

 
 2 d 2 1 2 3 4    

 2 d 2 1 
H ' =  −  2 + kx + c x + dx  −  − + kx 2 

 
  2m dx 2    2m dx 2 2 

H ' = cx 3 + dx 4 

The first order correction is: 

E (1) 
n = ψ (0) 

n H ' ψ (0) 
n = ∫ψ (0)* (0) 

n H 'ψ n dτ 

In the case of the harmonic oscillator, the wave function does not have imaginary 
component, then the equation for the first order energy correction is: 

E ( )2 1) ( 0) (0) 
n = ∫ H ' ψ (

n dτ , ψ n = real 

Then, we have the following unidimensional integral: 

α ∞

E (1) = )
π ∫ e− x2 (cx 3 + dx4 dx 

−∞ 

As one can see in Fig. 18.1, the integral of the function cx3exp(–x2) is zero in 
the region –∞ to +∞. Then, we use only the integral of the function dx4exp(–x2) 
which is non-zero in the region –∞ to +∞. (See Fig. 18.1). In Fig. 18.1, we have 
used the function exp(–x2/2) but similar results exist for the function exp(–x2). 

 
 



 

  Fig. 18.1: Plots of the functions: (a) y = x3; (b) y = exp(–x2/2); (c) y = x3exp(–x2/2); (d) y = x4; 
(e) y = x4exp(–x2/2). 
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Then, the first order correction for the energy becomes: 

(1) α ∞ 
4 − x 3dh2 

E = 2d ∫ x e 
2 

dx =
π 2 2  2

0 64π v m  
2π mvα = 
 

Example (2): The Hamiltonian of the helium atom is: 

 2∇2 2 2 2 2 2
1  ∇2 Ze Ze eH He = −  −  − − +

   
2m 2m r1 r2 r r1 − 2 

The Hamiltonian of the non-perturbated system is the sum of the Hamiltonian 
of two isolated hydrogen atoms H 0

1  and H 0
2  and the Hamiltonian of the perturbated 

system that is the potential energy operator between both electrons. 
2 2 2 

(0)  ∇ ZeH1 = − 1  −
2m r1 
2 2 2 

H (0)  ∇2 Ze
2 = −  −

2m r2 
2 2 2 2 2 2 

H (0)  ∇1 Ze  ∇2 Ze
= −  − −  −

2m r1 2m r2 

e 2 

H p = 
  
r r1 − 2 

HHe = H (0) + H p 



74.8eV
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The wave function of the non-perturbated system is the product of the wave 
function of two isolated hydrogen atoms. 

ψ (0) ( r 1, ,θ j1 1,   r 2 ,θ2 , j2 )  = χ 1 ( r 1, ,  θ j1 1 ) χ2 (  r 2 ,θ2 , j2 ) 

The energies and Schrödinger equations of the non-perturbated system are: 

E (0) = E1 + E2 

H (0) 
1 χ1 = E 1χ1 

H (0) 
2 χ2  = E 2 2  χ

The solutions of the above equations of the non-perturbated system is: 
Z e2 2

E 1 = −
n2

1 2a0
 

Z e2 2


E 2 = −
n2 

2 2a0 

(0) 2  1 1  e2 

E = −Z   2 + 2  = −108.8eV 
 n1 n 2  2a0 

The experimental energy of the helium atom is –78,95 eV. Then, the error is 
37,8%. When we take into account the first order correction of the Hamiltonian of 
the perturbated system, the corresponding first order corrected energy is: 

E (1) = ψ (0) H ' ψ (0) 

6 2 2 2  π  π π π  ∞ ∞  
(1) Z e  E = ∫ ∫ ∫ ∫ ∫ ∫ e −2Zr 1 /a0 e −2Zr 2 /a0 1 2 2

π 2 a6 r 1  n θ
12

r si 1r 2  sin θ2dr1dr2d θ θ1d 2  d  j1  dj2
0 0  0  0 0 0 0  

Important to observe that the differential dτ in spherical coordinates is: 

dτ = (r  ⋅dθ ) ⋅( dr  ) ⋅ ( dφ ⋅ r ⋅si n θ ) 
dτ = r2 ⋅sin θ ⋅ dr ⋅ d θ φ⋅d 
According to Fig. 18.2 

5Z e   2 
E (1) =   = 34eV 

8  a0  

The total energy of the helium is: 

E (0) (1) 
helium = E + E = −108.8 + 34 = –74,8 eV

The error in comparison with the experimental value (–78,95 EV) is 5.25%. 
Example (3): Consider one electron in a unidimensional box having length a, an 
applied electric field, E, force, F, acting over the electron F = –eE, and the potential 
energy V(x) = eEx. Considering that eEa << E0, where E0 is the energy of the ground 
state of the electron in the absence of the perturbation, give the first order corrected 
energy of the electron. 

 



 

 Fig. 18.2: The differential dτ in spherical coordinates 
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Solution: For an electron in a non-perturbated unidimensional box, with length a, the 
energy of the ground state and the wave function are: 

2 2  
(0) n hEn = , n =1, 2,3,... 

8ma 2

 2 
1/ 2 

(   n x  π ψ 0) 
n ( x ) =    sin   ,0 ≤ ≤x a

 a    a   

The Hamiltonian of the perturbated system is: 
H H  = (0) + H ' 
H ' = eEx 
The first order corrected energy: 

E (1) = ψ (0) H ' ψ (0) 

a 2 x a 
(1) π 2 ( π xE = ∫ sin  eEx ) ∫ sin dx 

0 a a 0 a a

(1) 2 a a 

∫ 2 π x 2eE π xE = eEx sin dx = ∫ x sin 2 dx 
a 0 a a 0 a

Let us use the following integral property: 

∫udv = uv − ∫ vdu 

where : u = x , du = dx 

2 π x x a 2π xdv = sin dx , v = − sin 
a 2 4 π a 
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E (1  
a a 

) 2eE   x a 2π x   x a 2π x = x  −  sin  −  − sin  dx 
a   2 4π a  ∫

0 0  2 4π a  

(1) 2eE  x 2 ax 2 x 
a 

 x a 2 x 
a 

π  2 2 π E =  − sin  −  +  cos a  2 4π a 0  4 8π a 0 

2eE  x2
(1) x 

a2  a 2 2π a  a 2 2π x 
a 

E =  −  − sin −   cos a  2 4  4π 0 a 8π a 0 

sin 2 π = 0 

(1) 2eE  a2 a2 a 2 2 π a a 2 2 0π 
E =  − − cos + cos a  2 4 8π a 8π a  
cos 2 π = cos 0 = 1 

2 2 2 
(1) 2eE  a a a  eEa E =  − +  =

a  4 8π 8π  2

4.1.2  m ≠ n 
Now, let us come back to the equation: 

( E (0) − E (0) (0) 
m n ) ψ m  ψ (1) = (0) (0) 

n E (1) 
n δmn − ψ m H ' ψ n 

for : m ≠ n  , δmn = 0 

then : ( E (0) − E (0) ) ψ (0) ψ (1) = − ψ (0) H ' ψ (0) 
m n m n m n  

If m≠n, then expand the wave function  ψ (1)
n  from a complete, orthonormal non­

perturbated wave function ψ (0)
m  of the H0. 

ψ (1) = ∑a ψ (0) 
n m m 

m 

am = ψ (0) 
m ψ (1) 

n 

By replacing the expansion coefficient am in the previous equation, we have: 

( E (0) E (0) 
m − n ) a m = − ψ (0) H '  ψ (0) 

m n 

ψ (0) H ' (0) 
m ψ 

then : a n
m = − 

( E (0) 
m − E (0) 

n )
Hence, we have the first order corrected wave function: 

ψ (1) (0) 
n = ∑amψ m 

m 

ψ (0) 
m H ' ψ (0) 

n ψ (0) 
m H ' ψ (0) 

a n 
m = −

(
 =

 E (0) 
m − E (0) ) ( E (0) − E (0) 

n n m )
ψ (0) 

m ψ (0) 
(1) 

H ' 
ψ n 

 n = ∑ 
m n  ≠ ( n )

ψ (0) 

 E (0) − (0) m 
 E m 
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4.2  Second order perturbation theory 

Let us come back to the Taylor series of the perturbated system: 

H ψ 2 
0 ψ

(0) ψ (0) (1) 
n + λ (H ' n + H0 n ) + λ (H ' ψ (1) + H (2) 

n 0 ψ n ) + =...

E (0) ψ (0) 
n n + λ (E (1) (0) + E (0) 

n ψ n n ψ (1) 
n ) +

+λ 2 (E (2) ψ (0) + E (1) ψ (1) 
n n n + E (0) 

n ψ (2) 
n n ) + ...

Now, let us take the explicit second order correction below (in terms of λ2): 

H ψ (2) + H ' ψ (1) = E (0) ψ (2) + E (1) ψ (1) + E (2) 
n n n ψ (0) 

0 n n n n n 

Let us now multiply both sides of the equation above by 〈ψ (0)
n | and integrate over 

the whole space: 

ψ (0) H ψ (2) + ψ (0) H ' ψ (1) = ψ (0) E (0) ψ (2) + ψ (0) E (1) 
n n n n n n ψ (1) 

0 n n n n +

+ ψ (0) E (2) ψ (0) 
n n n 

ψ (0) H ψ (2) + ψ (0) H ' ψ (1) = E (0) ψ (0) ψ (2) 
n n n n + E (1) 

n ψ (0) 
n ψ (1) 

0 n n n n +

+E (2) ψ (0) 
n n ψ (0) 

n 

According to the Schrödinger equation, 
H 0 Y =(0) E (0) Y (0) 

n n n 

We have: 

E (0) ψ (0) ψ (2) (0) (1) (0) (0) (2) 
n n n + ψ n H ' ψ n = En ψ n ψ n + 

+E (1) (0) (1) (2) (0) (0) 
n ψ n ψ n + En ψ n ψ n 

By considering the non-perturbated and the corrected functions as orthonormal, 
we have: 

ψ (0) 
n ψ (1) 

n = ψ (0) 
n ψ (2) 

n = 0 

ψ (0) ψ (0) 
n n =1 

Then, the second order corrected energy is: 

E (2) = ψ (0) H ' ψ (1) 
n n n 

Let us use the expression for that we have obtained in the last section 

ψ (1) (0) 
n = ∑amψ m 

m 

ψ (0) H ' (0) (0) (0) 

a = m ψ
 − n ψ m H ' ψ n 

m (E (0) − E (0) 
m n )

=
(E (0) − E (0) 

n m )
ψ (0) H ' ψ (0) 

Y =(1) 
n ∑ m n  (0) 

m n  ≠ E (0) 
n − E (0) ψ m 

m 



{ } { }

{ }

121 1(1) (2) (1) (2) (2) (1) (2) (1)
2 2

1 (1) (2) (1) (2) , anti-symmetrical
2

1 2, 1 2

P

spin spin

α β β α α β β α

α β β α

α β

− → − =

= − −

= = + = = −
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In the second order corrected energy expression: 

ψ (0) (0) 

E (2) 
n =  (0) 

H ' ψ 
ψ n H ' ∑ m n 

(0) 0) ψ (0) 
( m 

m n  ≠ E n − E m 

By removing the summation off the integral, we have: 

ψ (0) 
m H ' ψ (0) 

E (2) = ∑ n ψ (0) H ' ψ (0) 
n (0) (0) n m 

m n  ≠ E n − Em 

From the Hermetian property: 
* 

ψ (0) 
n H ' ψ (0) = ψ (0) (0) 

m m H ' ψ n 

By considering no imaginary terms in the wave function, we have: 
2

ψ (0) 
m H ' ψ (0) 

E ∑ n (2) 
n =  (0) (0) 

m n  ≠ E n − Em 

5.  Helium spin function 
Since fermions follow the anti-symmetry requirement of the Pauli exclusion principle 
and the spatial wave function of the helium atom is symmetrical, its spin function 
must be anti-symmetrical so that the whole wave function (product of spatial and 
spin functions) is anti-symmetrical. Let us use the permutation operator, P12, in order 
to find a proper spin function for the helium atom. Firstly, remember the properties 
of the permutation operator (see Chapter three) and symmetry below: 

Θ( ,s s ) P12 
1 2 →Θ(s 2 , s 1) = Θ( ,s1 s 2 ),  symmetrical 

Θ( ,  s P12 
1 s 2 ) →Θ(s 2 , s 1) = −Θ( ,  s1 s 2 ),  anti − symmetrical 

Then, we have the possible spin functions of the helium, the resulting function 
after permutation operator and the indication of being symmetrical, anti-symmetrical 
or neither of them. 

α α(1) (2) P12 →α (2)  α (1) , symmetrical 

β (1) β (2)  P12 → β (2)  β (1) , symmetrical 

α β(1) (2) P12 →α (2)  β (1) , not symmetrical and 
not anti-symmetrical 

β α(1) (2)  P12 → β (2)  α (1) , not symmetrical and 
not anti-symmetrical 
1 1 {α (1) β (2) + β α(1) (2)  } P12 → {α (2) β (1)  + β (2)  α (1)  } =
2 2 
1 

= {α (1) β (2)  + β α(1) (2) }, symmetrical 
2 



12

12

12

12

(1) (2) (2) (1) , symmetrical

(1) (2) (2) (1) , symmetrical

(1) (2) (2) (1) , not symmetrical and 
not anti-symmetrical

(1) (2) (2) (1) , not symmetrical and 
not anti-symmetrical
1 (1)
2

P

P

P

P

α α α α

β β β β

α β α β

β α β α

α

→

→

→

→

{ } { }

{ }

12 1(2) (1) (2) (2) (1) (2) (1)
2

1 (1) (2) (1) (2) , symmetrical

Pβ β α α β β α

α β β α

+ → + =
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1 
2

(1) (2 P12 1{α (1) β (2)  − β α ) } → {α (2) β (1) − β (2)  α (1)  } = 
2 2 

1 
= − {α (1) β (2)  − β α(1) (2)  } , anti-symmetrical
 

2
 
α = spin = +1 2,  β = spin = −1 2  

Then, since the spatial wave function of helium is symmetrical, we must use the 
following anti-symmetrical spin function: 

Θ(s s  , ) 1 
 1 2 = {α (1)  β (2)  − β α(1) (2) }

2 

6.  Variational method for helium atom with effective nuclear 
charge 

In the helium problem using first order perturbation theory, the helium nuclear charge 
was Z = 2, where no shielding effect was taken into account since one electron can 
shield the other electron leading to a decrease of the nuclear charge that the second 
electron is influenced to. In the next example, we will consider the effective nuclear 
charge, Zeff, as a result of the shielding effect. Let us suppose that Zeff is not known. 
We will use the variational parameter of the Zeff called x to obtain Zeff from the 
equation: 

Zeff = Z −x 

We will use a mathematical artifact to find minimum of the function x and then 
obtain Zeff of helium. 
Solution: Based on the Hamiltonian of the helium: 

 2 2 e 2 e2
2  2 e 2H = − ∇ −1  ∇ −2 Z  − Z +

2me 2me r1 r2 r12 

Let us add and subtract the variational parameter x in the Hamiltonian: 



2 
 2 e 2 e2 e 2  e2 e2 e2 e 2 

H = − ∇ −2  ∇ −2 Z − Z + + x −x +x −x 2m 1 m 2 
e 2 e r1 r2 r12   r1 r1 r2 r2  

Rearranging the above equation, we have: 

 
 2 e 2  2 e 2  e 2 e2 e2

H =  −  ∇ −2 x − ∇ −2 x  + (x − Z ) + (x − Z ) +  
 2m 1 r 2m 2 

e 1 e r 2  r1 r2 r12 

The term between the square brackets is the sum of Hamiltonians of two 
hydrogen atoms with nuclear charge x. 
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Now, let us use the Hamiltonian of two hydrogen atoms with nuclear charge Z 
in the Schrödinger equation with a guess function j. 

2 2 2 2 2 
 2  2 e e  2  1 1  e

−  ∇ −  ∇ − Z − Z j = −Z + j 1 2   2 2 2m 2m r r n n 2a e e 1 2   1 2  0 

In the ground state (n = 1), we have 
2 2 2 2 2 
 2  2 e e  2 e

−  ∇ −  ∇ − Z − Z j = −2Z j 1 2 2m 2m r r 2a e e 1 2  0 

Let us replace Z with x. 
2 2 2 2 2 2 
 2  2 e e  2 e 2 e−  ∇ −  ∇ −x −x j = −2x j = −x j 1 2 2m 2m r r 2a a e e 1 2  0 0 

The variational integral of the normalized guess function is: 

2 2 2 2 
 e  e  

 −  ∇ −x −  ∇ −x  1
2 2

2 2m r 2m r* *  e 1 e 2  . = j   .dH d  j τ  j  j τ  ∫ ∫ 2 2 2 e e e +(x − Z ) + (x − Z ) + r r r 1 2 12  

By replacing the term in the square brackets with the eigenvalue of the 
corresponding Schrödinger equation, we have: 

2 2 2 2
 
* * 2
 e e e e 

j  j τ  . = j −x j + (x − Z ) + (x − Z ) +  j τ  .dH d  ∫ ∫ a r r r 0 1 2 12  

Rearranging the above equation, we have the variational integral: 
2 * 

* 2 e * 2 j jd − j j τ  .j  j τ  H . = x .d + x − Z e  dτ +∫ ∫ ( ) ∫a r0 1
 

∫ 
* 

∫ 
*
 

2 j j  2 j j
+(x − Z ).e dτ + e dτ 

r r2 12 

Let us assume that the guess function is a product of two 1s orbital, represented 
by f1 and f2. Next, let us evaluate each term of the above variational integral. 

* * * * *d = f f f f d  d  = f f d  f f d  =1j j τ  τ τ  τ τ∫ ∫∫ 1 2 1 2 1 2 ∫ 1 1 1 ∫ 2 2 2 

* * *j j f f  f f1 1 * 1 1dτ = dτ f  f dτ = dτ∫ ∫ 1 ∫ 2 2 2 ∫ 1 r r r1 1 1 

d = (r ⋅ dθ ) ( ) ( dφ r sin θ = r 2 ⋅sin θ ⋅ ⋅  ⋅ dτ ⋅ dr ⋅ ⋅ ⋅  ) dr d θ φ  
* 3 ∞ 2 π 2π
 

1 1 −2x r1 /a0 1
f f  1 x r xd = e dr sin θ θτ  d dφ = 1 1 1 1 1∫ 3 ∫ ∫ ∫r π a r a1 0 0 1 0 0 0
 

* * *
j j f f  f f  x2 2 1 1dτ = dτ = dτ =∫ ∫ 1 ∫ 1r r r a1 2 1 0 
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Then, the variational integral becomes: 

5 e2 

∫ * j τ  2 j H d. = x − 2Zx + x  
   
 8  a0
 

Now, we will obtain the minimum of the variational integral as a function of x. 

∂ 5  e2 
∫ * ∂ j H dj τ. =   x 2

 − 2Zx + x 0  =
∂x ∂x  8  a0  

∂ 
∫ *  5  e2 

j H d j τ. =  2x − 2Z +  = 0
∂x  8  a0 

5 x = Z −
16 

By replacing x = Z – 5/16 in the variational integral, we have: 

*  2 5 
∫  e2 

j H dj τ. = x − 2Zx + x  
   
 8  a0
 

2 
2  5  2 10 25 x =  Z −  = Z − Z +

 16  16 256
 

 5  Z Z   − = 2 10

−2Zx = −2   −2Z + Z

 16  16 
5 5  5  5Z 25 x =  Z −  = −
8 8  16  8 128 

2 

∫j*   2 10 25 2 10 5Z 25  eH d j τ. =  Z − Z + − 2Z + Z + −   
 16 256 16 8 128  a0 

 e 2*  2 5 25  5 
∫ 

2 e2 

j H dj τ. =  −Z +  Z −  =  Z − 
 8 256  a0  16  a0 

Helium : Z = 2 
2 

j*  5  e2 

∫ H  j τ.d =  2 −  = −77.5eV 
 16  a0 

The error with respect the experimental value (–79.0 eV) is 1.9% which is much 
smaller than that using nuclear charge as Z (5.3%). 

7.  Exercises 

 (1)  A particle of mass m in a unidimensional box having length a is perturbated as 
with a Hamiltonian H’ from a/2 to a, calculate the first order corrected energy. 

Data: 
2 2  

0 n h  2  nπ x  h2 

En = 2 ,j
0
n = sin   , H ' = 2 , a 2 ≤ ≤x a

8ma a  a  8ma 



 

 (2)  The function u = Ax(a2 – x2) is used as guess function for a particle having mass 
m in a unidimensional box where V = 0 for 0 ≤ x ≤ a and V = ∞ for other regions. 
Calculate the approximate eigenvalue and the relative error. 

Data: 

1  2 d 2 


2

H = −  , E  2 1 =2 m dx 8ma 2
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While starting new chapter (remove 
ligature from every text)

The differential equation below: 

 1 2 j k  + +1  k 2 −1 yk
j ´́ ( x  ) + − +  −  

 4 2  yk
j (x  ) = 0

2x 4x  
having as solution: 

yk −x 2 ( k +1 2  ) k
j ( )  x  = e x  L x  j ( )

is a slightly different type of the associated Laguerre equation depicted below: 

xLk '' + 1  x k k
j ( )  x ( − + ) L j '( )  x + jLk

j ( )x = 0

whose solution is also slightly different from that of the former equation: 

yk ( )  x  = e−x 2 xk 2 L xk
j j ( )

We will show that by replacing: 

yk ( )  x  = e−x 2 x  ( k +1 2  ) L x  k
j j ( )

In the former differential equation will lead to the latter differential equation (the 
associated Laguerre equation). 
Firstly, let us simplify the notations so far used: 

yk ( )  x  = y , L xk
j j ( )  = v 

and do the first derivative on: 

y e= −x 2 ( k+1 2) x v 

Appendix 
Special Case of Associated Laguerre 
Equation 
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giving: 

1 −x /2  (k +1  ) /2  −x/2   k +1 y ' = − e x v e  + x(k −1)/2 v e+ −x /2  
 x(k +1)/2 

 v  '
2  2  
1 −x/2  (k +1  ) /2   k +1 y ' = − e x v e  + −x/2  x−1x(k +1)/2 v e+ −x/2  x(k +1)/2 

  v  '
2  2  
1 e−x/2  x(k +1 ) /2  v e  −x/2   k +1y ' = − +   x(k +1)/2 v e+ −x /2  x(k +1)/2 v  '
2  2x  

 1  k +1 y ' = − v + v + v e' −x/2  x(k +1)/2 
   
 2  2x   

⇒ (ex/2  x− +(k 1)/2 ) 1  k +1y ' = − v +   v v+ ' 
2  2x  

Let us derivative the equation: 

1 y ' = − e−x /2  x(k +1 )/2  v e  + −x/2   k +1 (k +1)/2 v e+ − /2  
  x x x(k +1)/2 v  '

2  2x  
By derivating the first term, we have: 

1 e−x/2  x ( k +1 ) /2  1 v − e − x/2   k +1 x−1  x(k +1 ) /2  1 
  v − e−x/2  x ( k+1 ) /2  v ' 

4 2  2  2 

⇒ e−x /2  (k +1 ) /2  1 1  k +1 1 x v −    v − v ' 
4 2  2 x  2  

Let us rearrange the second term: 

−x/2   k +1e x(
 

k +1)/2 −x/2   k +1 ( 1)/2 
 v = e   x k − v

 2x   2  
And now let us derivate the second term: 

−x/2   k +1e x(
 

k +1)/2 −x/2   k +1v = e x(k −1)/2 
   v

 2x   2 
 
1 −x/2   k +1− e x(k +1)/2 e −  k +1 k −1v + x/2  x−1x(k −1)/2

  v 
  
    +

2  2x   2  2  

−x/2   k +1 (k +1)/2 1 −x/2   k +1+e (
 

k +1)/2 −x/2   k +1 k −1 ( k +1)/2 
 x v ' = − e   x v + e    x v

 2x  2  2x   2x  2x  
−x /2   k +1+e x(

 
k +1)/2 v ' 

 2x 
 

⇒ e−x /2  (k +1)/2  1  k +1  k +1   k −1  k +1 
x − v +        v +   v ' 
 2  2 x   2x   2x   2x    



2

2

2

2

1 2 1 1 0
4 2 4

1 1 1 1 1 1'
4 2 2 2 2 2

1 1
4 2

j k k v
x x

k kv v v v
x x

k kv
x x

 + + −
+ − + − ⋅ = 
 

+ +   − − −   
   ⇒

− ++ +

2

2

1 1' ' ' ''
2 2

1 2 1 1 0
4 2 4

kv v v v
x

j k kv v v
x x

 
  + 

+   − + +        
+ + −

− + − =
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By derivating the third term, we have: 
1 −x/2  (k +1)/2 −x/2   k +1− e x v '+ e ( 1)/2 /2 ( 1)/2

  x k + v '+ e−x x k + v '' 
2  2x  

−x /2  (k +1)/2  1  k +1  
⇒ e  x − v '+ v v  '+     ''

 2  2x   
By summing the derivatives of three terms of the original equation (y’), we have: 

1 1  k +1 1   
 v − v −    v ' + 
4 2  2 x  2   

 

y '' = e−x/2  (k +1)/2  1  k +1  k +1 k −1  k +1  
x  −  v + +   v  v ' +  
 2  2 x   2x  2x   2x    
  1  k +1 + −  v '+ v v'+ ''      2  2x    

And let us rearrange it to become: 

( x /2  − +(k 1)/2 ) 1 1  k +1 1 1  k +1e x  y '' = v −  v − v '−  v
4  2 2 x  2 2 2 x 
  

 k +1 k −1  k +1 1  k +1
 +   v +   v '− v '+  v v'+ ''
 2x  2x   2x  2  2x  

Let us take this equation above and the solution: 

y e= −x 2 (k +1 2) x v 
and replace them in the special type of the associated Laguerre equation: 

 1 2 j k+ +1 k 2 −1 y ''+ − +  −   y = 0
 4 2x 4x2 

 
to give: 

1 1  k +1 1 1  k +1  
 v − v − v '−      v 4  2 2 x  2  2 2 x  
 (e−x/2  x (k +1)/2
 ) + 
  k +1 k −1  k +1 1  k +1 +   v + 
      v '− v '+  v v'+ ''
  2x  2x   2x  2  2x  
 1 2 j k+ +1 k 2 −1

+ − +  −  2  ⋅
 4 (e−x 2 x (k +1 2) v) = 0
 2x 4x  

After dividing the equation above by e-x/2x(k+1)/2, the equation becomes: 

1 1  k +1  1 1  k +1   
 v −   v − v '−   v 4  2 2 x  2  2 2 x  
 + 
  k +1 k −1  k +1 1  k +1 +   v +   v '− v '+  v v  '+ ''  2x  2x   2x  2  2x   

 
 



1 1 1 1 1 1'
4 2 2 2 2 2

1 1 1 1 1' ' ' ''
2 2 2 2 2

k kv v v v
x x

k k k kv v v v v
x x x x

 + +    − − −         + 
+ − + +       + + − + +              
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 1 2 j k+ +1 k 2 −1
+ − +  −  2  ⋅v = 0 
 4 2x 4x 
 
1 1  k +1  1 1  k +1  
 

− v −   v v '−   v  4  2 2 x  2  2 2 x  ⇒  2 + 
 k −1  k +1 1  k +1  + 2 v +  v '− v '+  v v  '+ ''  4x  2x  2  2x  
 

1 2 j k  + +1 k 2 −1

− v + v − =

x2 v 0
4 2x 4

Where some terms are canceled out to give: 

 1  k +1 1 1  k +1 
−  v '−    v −   v  2 2 x   2  2 2 x   2 j k  + +1 
  +  v = 0
  k +1 1  k +1 2 x 
+   v ' v '+ v v  ' '' −   +
  2x  2  2x  
Let us rearrange the equation above: 

  k +1 1  k +1 
− v − v '−      v   4x   2  4x   j k +1 
 + v + v = 0 
  k +1 1  k +1  x 2x
+   v '− v '+  v v'+ '' 2x 2  2x     

And see that more terms are canceled out: 

 1  k +1 1  k +1  j
− v '+   v '− v '+  v '+ v ''+ v = 0
 2  2x  2  2x   x 
More rearrangement in the equation yields: 

  k +1  j
− +v '   v v  '+ '' + v = 0 
  x   x 

 k +1 j
⇒ v '' +   v v  '− +' v = 0

 x  x
 

⇒ xv '' + ( k +1 ) v  ' − xv ' + jv 
  = 0 

⇒ xv ''+ (k  + −1 x )v '+ jv = 0 

Which becomes the associated Laguerre equation: 

xL k ( )  k
j '' x + (1 − +x k ) L j '( )  x + jL k 

j ( )x = 0



https://taylorandfrancis.com


 

  

Index
 

A 
A regular singular point of the second-order 

differential equation 139 
adjunct matrix 83 
angular momentum 224, 225, 227, 244, 245, 

247–249, 308–312, 314, 316–318, 324 
annihilation operator 242 
anomalous Zeeman effect 185, 186, 224, 225, 

227, 310, 312, 314–318 
antisymmetrical eigenfunction 332 
antisymmetry property of the determinants 85 
array 11, 23–29, 32, 33, 45, 46  
associated Laguerre equation 147–150, 397 
associated Legendre equation 150, 157, 159–161, 

163, 174 
atomic absorption lines 180 
atomic core model 219, 310 
atomic orbitals 385, 399, 418, 419, 420 
aufbau principle 211 
azimuthal angle equation 388, 389 
azimuthal angle function 389, 391 
azimuthal equation 380 
azimuthal quantum number 212, 219, 310, 314, 

316, 371, 381, 382 

B 
Balmer formula 184 
Balmer series 183, 209, 220 
basis set 101, 102, 104, 105 
basis vectors 101, 104 
bisection method 69, 74, 75 
black-body 189–194, 198–201 
Bode’s rule  61 
Bohr magneton 211, 309, 317 
Bohr radius 209, 210 
Bohr’s atomic model  208, 211 
Bohr’s building-up principle  314 
Bohr’s postulate  211 
Bohr-Sommerfeld model  218 
Boltzmann distribution 328–330 
Boltzmann statistics 328 
building-up principle 211, 212, 314, 316 

C 
canonical transformation 234 
centrifugal potential 400, 410, 413 
characteristic equation 111, 112, 132, 133 
classical harmonic oscillator 133–135, 335, 337 
commutative property 80, 124 
Commutator 80, 123, 124, 231–234, 237, 246, 247 
complementary theory 303 
complex conjugate 98, 99, 434 
complex numbers 98 
composite wave 254, 255 
construction principle 211 
Copenhagen interpretation 303 
correspondence principle 212–214, 225–227, 303 
Coulomb potential 385, 392, 400, 409, 410, 414 
Cramer’s rule  96 
creation operator 243 
cross product 102, 103 

D 
Degeneracy 361 
determinant 81–83, 85–87, 93, 98, 100, 111 
diagonal matrix 229, 230, 232–234, 236, 248 
Differentiation 48, 56, 57, 68 
Dirac equation 322, 326 
Dirac-Heisenberg rules  237 
Dirac notation 272, 273 
dot product 102, 104, 105 
double slit interference experiment 250 

E 
eigenvalue equation 87, 104, 106, 107, 125 
eigenvalue problem 248 
eigenvector 87–89, 100, 102, 104–110, 112, 113, 

118, 119, 121, 124 
electron spin 310, 314, 317–319, 322 
emission spectra 181, 184 
energy distribution law  191–193, 196, 199 
Euler’s formula  51, 52, 133, 254 
even function 52 
exclusion principle 314, 316–318
	
expectation value 237, 238, 273–278, 282, 287, 


288 



 

 452 Quantum Mechanics: Detailed Historical, Mathematical and Computational Approaches 

F 
Fourier series 48, 51–54, 212, 225, 226, 228, 229 
Fourier transform 48, 54, 225 
Frobenius method 139, 145, 147, 160, 174 

G 
Gaussian elimination method 82, 84, 91 
generating function 50, 51 
g-factor 310, 312, 313, 316 
grating spectroscope 181, 186 
group velocity 254, 255, 257–260 

H 
Hamiltonian function 263, 268, 285, 287 
Hamiltonian matrix 231, 232, 234, 236, 240 
Hamilton-Jacobi equation 234, 264, 266–268, 

270 
harmonic oscillator 194, 198, 199, 204, 330 
Heisenberg equation of motion  230 
Heisenberg’s uncertainty principle  299, 303 
Hermetian matrix 231 
Hermite differential equation 271 
Hermite equation 142, 143 
Hermite polynomials 271 
Hermite transformation matrix 234 
Hermitian operator 99, 111, 281–284 
homogeneous matrix equation 97 
homogeneous system of linear equations 97 
hydrogen atom 385, 386, 398, 399, 405, 406, 

412, 414, 417–422, 424, 425 
hydrogen spectrum 182, 183 
hypervirial theorem 293, 294 

I 
indicial equation 140, 141, 146, 174 
inner quantum number 219 

J 
Jacobi method 88, 97, 100, 113, 114, 118 

K 
Kirchhoff spectroscope 181 
Klein-Gordon equation 323 

L 
ladder operators 243 
Laguerre equation 142, 145, 147–150 
Landé g-factor 310, 312, 313 
Landé g-values 225 
Laplace expansion 82, 83 
Larmor frequency 309, 312, 314, 316 

Larmor’s theorem  308, 313, 315 
Legendre equation 142, 150–152, 154, 156, 157, 

159–161, 163, 174 
Legendre Polynomials 153–158, 161, 174 
light quanta 256 
light quantum 256 
line spectrum 180, 181 
linear momentum 231, 235, 237, 244, 245 
linear operator matrix 87, 88 
linear transformation 104–107, 124, 125 
Lorentz model 225, 295, 337 
Lorentz’s theory  194, 215 

M 
MacLaurin series 48, 54, 55, 137, 142 
magnetic dipole moment 308, 309, 312 
magnetic quantum number 308–310, 312, 313, 

315, 371, 381, 400 
matrix 6, 24, 28–32, 43, 44 
matrix diagonalization 87, 88 
matrix mechanics 227, 234–238, 246, 248 
matrix multiplication 229, 231 
matter wave equation 267 
matter waves 256 
mean of a function 61, 62 
midpoint rule 66, 67 
model of distinguishable non-interacting particles  

426, 427 
Monte Carlo integration 61–64 

N 
Newton-Raphson method 73–75 
non-homogeneous linear equations 95, 113, 114, 

117 
normal Zeeman effect 309–312 
normalization constant 279, 280 
numerical integration 48, 58, 60, 61, 68 
Numerov method 76 

O 
odd function 52 
one-dimensional free motion of particle 290 
one-particle harmonic oscillator 238, 243, 337 
one-particle quantum harmonic oscillator 409 
orbital angular momentum 310, 317, 318 
orbital quantum number 399 
ordinary point of the differential equation 138 
orthogonal matrix 81, 84, 85, 118, 119, 121 
Oscillator 213–217 

P 
particle in a ring problem 389 
particle in the ring 371, 381, 384 



 Index 453 

Pauli’s exclusion principle  86, 212, 330, 332 
periodic wave 252, 254 
permutation matrix 85 
permutation operator 441 
perturbation theory 223, 224, 426, 432, 433, 440, 

442 
phase-space quantization rule 217 
photoelectric effect 200, 201, 209, 256 
Planck’s law  189, 192, 194, 198–200, 202, 204, 

328 
Planck’s oscillator  235, 270 
polar angle equation 388–390 
polar equation 380 
position coordinates 215 
power equalization 50 
power series 48–50, 54 
power-series method  136, 137, 150 
principal quantum number 209, 212, 217–219, 

310, 397, 399, 402 
prism spectroscope 181 
Probability density 238 

Q 
quantization phenomenon 186 
quantum angular momentum 245, 248 
quantum condition 234, 235, 261 
quantum harmonic oscillator 335, 338, 345, 346, 

349, 350, 355 
quantum matrix mechanics 238 
quantum mechanical virial theorem 294, 304 
quantum motion 231 
quantum numbers 211–213, 217, 218, 227, 237 

R 
radial equation 387, 392, 394–396, 399, 402, 

404–406, 413, 414 
random numbers 44 
Rayleigh-Einstein-Jeans law 192, 200 
Rayleigh-Jeans law 192, 194, 200 
recurrence relation 136, 143, 146, 147, 152 
recursion formula 136, 138–141, 137, 142 
Resonance 295–297 
Rydberg constant  184, 209 
Rydberg’s formula  184 

S 
secant equation 75 
secant method 74, 75 
secondary quantum number 399, 400 
second-order differential equations 130, 131, 

139, 142 
secular homogeneous equations 97, 98 
secular homogeneous linear equations 97, 107 
separation of the variables 360 

Simpson’s rule  58, 60, 61 
Slater’s determinant   332 
special theory of relativity 251, 256 
spectral radiance 189, 191–200, 203, 328 
spherical harmonics 371, 380, 382, 388, 391, 

392, 418, 422, 423 
spin 224, 237 
spin operator 318, 319 
Stark effect 186 
state of the system 215 
state vector 230, 237 
stationary states 208, 210, 211, 214, 217 
Stefan-Boltzmann law 191 
subordinate quantum number 217 
summation 17, 25, 39 
superposition principle 274–276 
symmetric matrix 81, 105, 118, 120, 121 
system of linear equations 81, 82, 84, 85, 96, 97, 

113, 114 

T 
Taylor series  54–56, 58, 61, 76, 77 
thermal black-body 328 
time-independent Schrödinger 346 
total angular momentum 219 
trace of a square matrix 81 
transpose of the matrix 81 
travelling wave 253, 254 

U 
uncertainty principle 297, 299, 303 
undulatory mechanics 270 

V 
variation principle 268, 270 
variation problem 268 
variational method 426–428, 430, 442 
vector 24, 25, 29, 45 
virial theorem 293–295, 304 
virtual oscillator theory 225 

W 
wave function 269, 271–276, 279, 280, 282, 

286–288 
wave mechanics 264, 266, 267, 269–272, 274 
wave packet 250, 255, 256 
wave-particle duality 250, 256, 260 
Wien’s displacement law  191, 192, 197 
Wien’s energy distribution law  191 

Z 
Zeeman effect 184–186, 224–227 


	Cover
	Title Page
	Copyright Page
	Dedication
	Preface
	Table of Contents
	Part One—Computational and Mathematical Support
	1. Basics of Fortran
	2. Basics of Numerical Calculation and Series
	3. Linear Algebra for Quantum Mechanics
	4. Differential Equations for Quantum Mechanics

	Part Two—Old Quantum Mechanics, Matrix Mechanics and Wave Mechanics
	5. Absorption/Emission Spectroscopy and Spectral Lines
	6. Black-body Radiation, Einstein and Planck’s Law
	7. Bohr, Sommerfeld and Old Quantum Mechanics
	8. Heisenberg’s Matrix Quantum Mechanics
	9. Wave Packet and de Broglie’s Wave-particle Duality
	10. Schrödinger’s Wave Quantum Mechanics
	11. Applications of Matrix and Wave Quantum Mechanics
	12. Landé, Pauli, Dirac and Spin
	13. Boltzmann and Fermi-Dirac Statistics

	Part Three—Schrödinger’s Solutions to One and Two-electron Problems
	14. One-particle Quantum Harmonic Oscillator
	15. Particle in a Box
	16. Particle in a Circular Motion and Angular Momentum
	17. Hydrogen-like Atom and Atomic Orbitals
	18. Helium Atom, Variational Method and Perturbation Theory

	Appendix: Special Case of the Associated Laguerre Equation
	Index



